

How To Build A Brain

 Perception
Beating humans

Gary Kasparov

Deep Blue

Feng-Hsiung Hsu

1997: Deep Blue beats Gary Kasparov at chess.

Moravec's paradox (1988)

"It is comparatively easy to make computers exhibit adult level performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a one-yearold when it comes to perception and mobility"

Rodney Brooks

In early AI research, intelligence was characterized as
"the things that highly-educated male scientists found challenging"
while
"things that children of four or five years could do effortlessly, such as visually distinguishing between a coffee cup and a chair... were not thought of as activities requiring intelligence"

Stephen Pinker (1994)

"The main lesson of thirty-five years of AI research is that the hard problems are easy and the easy problems are hard"

AlexNet (2012)

Ilya Sutskever, Alex Krizhevsky, Geoffrey Hinton

Visual Neuroscience

λ

Deeper

More sparse

Receptive fields

Receptive field

Visual field

Neural tuning

Simple to complex

Neocognitron

Recognition of handwritten digits

$80322-412980006$
400044310
$0787 e .05453$
3550275346
$35460: 44209$

AT\&T DSP 32C

Convolutional filter

Input

0	1	0
0	1	0
0	1	0

Weights

0	1	-1
-1	1	-1
-1	1	0

1	0	0
0	1	0
0	0	1

1	1	1
1	1	1
1	1	1

0	1	-1
-1	1	-1
-1	1	0

Convolutional filter

Filter applied to top-left of image

Convolutional filter

Next filter overlaps.

Convolutional filter

The filter is applied a total of 64 times across the image (8 examples shown here).

...and produces output
activations for 64 hidden units, in an 8×8 grid.

Weights: 25
(vs. a dense network: 16,384 !)

Convolutional filter

size: 8×8 conv: 5×5 stride: 2
weights: 25

Filter Bank

size: 16×16

$2^{\text {nd }}$ Filter Bank

The $2^{\text {nd }}$ filter is applied a total of 16 times across the $1^{\text {st }}$ filter (4 examples shown here).

...and produces output activations for 16 hidden units,
 in an 4×4 grid.

3D convolutional

 filter

First Three Layers

Last two layers

LeNet

LeNet

Trained with backprop
7,291 digits, 23 times each (167,693 trials).

5\% errors on a test set.
10 digits/second

AlexNet (2012)

Imagenet (2009-)

14 million images
20,000 categories
100s examples per category

Some of the fish pictures in ImageNet

Legacy of AlexNet

100,000+ citations
Acquired by Google
Big Tech headhunts brain-inspired AI academics

Geoff Hinton
Now @ Google

Higher-res, and colour \quad AlexNet

 LeNet
size: 16×16

size: $256 \times 256 \times 3$

Dense

Grouping

ResNet (2016)

5

 vos

Network degradation

Jian Sun

Network degradation

Residual Block

ResNet 34

ResNet 152

ResNet152 with ResNet 34 for scale (zoom in to slide for detail)

Applications

Content moderation

Table 2. NPDI dataset samples

Mohammed Moustafa (2015)

Content moderation

Approach	Accuracy (\%)
BossaNova (HueSIFT) [2]	89.5 ± 1
BossaNova VD (BinBoost16) [3]	90.9 ± 1
Proposed ANet	92.01 ± 3
Proposed GNet	93.7 ± 3
Proposed AGNet	$\mathbf{9 3 . 8} \pm \mathbf{2}$
Proposed AGbNet	$\mathbf{9 4 . 1} \pm \mathbf{2}$

Stills

Tesla AutoPilot

Steering
\& Accel

Tesla AutoPilot

Autopilot is a complex system.
...but nearly the first thing that happens to the data from each of the 8 cameras is that it's passed through a RegNet. This is a development of the ResNet system.

Tesla AutoPilot

Autopilot is a complex system.
...but nearly the first thing that happens to the data from each of the 8 cameras is that it's passed through a RegNet. This is a development of the ResNet system.

Why so deep?

The paradox

-[]- A multilayer feedforward network, with sufficient hidden units can represent any deterministic mapping between its inputs and its outputs - Hornik, Stinchcombe \& White (1989)

Lower complexity

2-layer dense network
150,000 inputs
75,000 hidden
1,000 outputs
$=11$ billion connections

50-layer ResNet
150,000 inputs
1,000 outputs

24 million connections 400 times simpler

Overfitting

Underfitted

Good Fit/Robust

Overfitted

Overfitting

The State Of The Art

How good are they?

"recent advances from machine learning led to the discovery of hierarchical neural network models that achieved near-human-level performance level on challenging object categorization tasks"

- Yamins \& DiCarlo (2016)

Can you be more specific?

PNASNet:

- 96.2\% Top-5 accuracy on ImageNet (Liu et al., 2018)
(1) Hatstand
(2) Orange
(3) Battleship
(4) Dandelion
(5) Cat

How about a sensible answer?

PNASNet:

~73\% Top-1 accuracy on ~300 ImageNet categories (Barbu et al., 2019)
(1) Cat
(2) Orange
(3) Battleship
(4) Dandelion

(5) Hatstand

Barbu et al. (2019)

Internet objects
72\% correct

Objects in the real world 30 \% correct

How good are people?

cose

Results

How To Improve?

Insufficiently sensitive to shape

Overly sensitive to tiny local features

(c) Single diagnostic pixel

Evans et al. (2022)

Evans et al. (2022)

Summary

