
  

How To Build A Brain
History And Core Concepts



  

Goals

To help you 
understand the 
history and core 
concepts of brain-
inspired artificial 
intelligence.



  

AI: Not just for old white men



  

Early history



  

400BC - 1900AD



  

Golgi

CajalNeurons



  

Plymouth 
Marine Laboratory

Alan 
Hodgkin

Andrew
Huxley



  

Three abstractions



  

Output Activation

The activity of a neuron, as a single number
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Output Activation

Output activation is the sum of the inputs.
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Input activation

Input activation = output activation multiplied by the connection 
strength
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Putting it together

Output activation of a neuron is the sum of the 
outputs of other neurons multiplied by the 

connection weights.
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Test your understanding...

Output activation of a neuron is the sum of the 
outputs of other neurons multiplied by the 

connection weights.
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Test your understanding (2)

Output activation of a neuron is the sum of the 
outputs of other neurons multiplied by the 

connection weights.
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Activation function

The logistic function in useful in various ways.
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Storing knowledge



  

Neural Network
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Neural Network
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Bell Light Food

1 0 1

1 1 0

What should wB 
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Learning



  

Learning

Konorski
Russia, 1948

Hebb
USA, 1949

Cajal
Spain, 1894



  

Hebbian Learning

Hebb

   A B

"When an axon of cell A is near enough to excite cell B and 
repeatedly or persistently takes part in firing it, some growth 
process or metabolic change takes place in one or both 
cells such that A's efficiency, as one of the cells firing B, is 
increased”

Neurons that fire together wire together



  

Long-term potentiation

Neurons that fire together wire together

Aplysia CalifornicaTerje Lømo Eric Kandel



  

Hebbian Learning

   1 2

Neurons that fire together wire together
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Hebbian Learning

   Bell

Neurons that fire together 
wire together
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G= 0.1

Trial Bell Food Δw w

1 1 1 .1 .1

2 1 1 .1 .2

3... 1 1 .1 .3

...1000 1 1 .1 10 (!)
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0



  

Acquisition

Learning tends to 
slow as it 
proceeds.



  

Bush-Mosteller

   1 2

The more you know, the less you learn.
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Bush-Mosteller

   Bell

The more you know, the less 
you learn.
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1
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1 1 1 .1 x (1-0x1) = .1 .1

2 1 1 .1 x (1-.1x1) = .09 .19

3... 1 1 .1 x (1-.19) = .081 .271

...1000 1 1 .1 x (1-1) = 0 1
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Delta rule



  

Blocking (Kamin, 1969)

1. Tone → Food
2. Tone + Light → Food
3. Light → ?

?

Kamin



  

Bush-Mosteller (Blocking)
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Bush-Mosteller (Blocking)
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Bush-Mosteller (Blocking)
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Blocking (Kamin, 1969)

1. Light → Food
2. Tone + Light → Food
3. Tone → Little salivation



  

Why 
blocking?



  

Rescorla-Wagner (1972)

Rescorla Wagner



  

Bush-Mosteller
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Bush-Mosteller → Rescorla-Wagner
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Stage 1: Light → Food

 G= 0.1

Trial Light
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)
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(t)
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w
LF

1 1 1 .1 x (1-0) = .1 .1

2 1 1 .1 x (1-.1) = .09 .19

3... 1 1 .1 x (1-.19) = .081 .271

...1000 1 1 .1 x (1-1) = 0 1
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Stage 2: Light + Tone → Food

 G= 0.1

Trial Tone
(a

T
)
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(t)

Δw
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w
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1 1 1 .1 x (1-1) = 0 0

2 1 1 .1 x (1-1) = 0 0

3... 1 1 .1 x (1-1) = 0 0

...1000 1 1 .1 x (1-1) = 0 0
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Stage 3: Tone → ?
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AI: Convergence rule

Mathematical proof: anything that can 
be learned by a single-layer network 
will be learned by the delta rule.
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1958-1969: AI optimism

"the embryo of an electronic computer that [the Navy] expects will be 
able to walk, talk, see, write, reproduce itself and be conscious of its 
existence." 



  

First AI Winter



  

XOR

“Omelette, with chips or salad”



  

XOR

“Omelette, with chips or salad”



  

Limitations of single-layer nets
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Perceptrons (1969)

Minksy Papert



  

1st AI winter (1974-1980)

Lighthill

"In no part of the field have the 
discoveries made so far produced 
the major impact that was then 
promised"
- Lighthill report (1974) 



  

Solving XOR



  

Solving XOR

C

S

OK

Threshold activation

If in < T, out = 0
Otherwise, out = in 



  

Solving XOR
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If in < T, out = 0
Otherwise, out = in 
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Output: 1
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Output: 2

1+1-2 = 0
Output: 0



  

Backprop



  

Backpropagation of error
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Defining error
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Error = 0 – 1 = -1
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Error = 0 – .8 = -.8

0

Input = .6+.6 = 1.2



  

History of backprop



  

Standard story

Rumelhart, Hinton & Williams (1986)



  

Invention of backprop

Kelley (1960) Werbos (1974)



  

Invention of backprop

Sun-1 (1983)
£24,000 in today’s money

Yann LeCun



  

Connectionism



  

Power and limitations of backprop



  

Universal approximators

A multilayer feedforward 
network, with sufficient 
hidden units can 
represent any 
deterministic mapping 
between its inputs and 
its outputs
- Hornik, Stinchcombe & 
White (1989)

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



  

Error surface
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Interference

“Every time I learn 
something new, it 
pushes some old stuff 
out of my brain”

- Homer Simpson



  

People: Retroactive Interference

Retroactive 
interference
Barnes & Underwood 
(1959)

List 1 (A-B)
 dax – regal
 …

List 2 (A-C)
 dax – cabbage
...



  

Backprop: Catastrophic Interference

Catastrophic 
interference
McCloskey & Cohen 
(1989)

List 1 (A-B)
 dax – regal
 …

List 2 (A-C)
 dax – cabbage
...



  

Neural plausibility



  

Summary
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