

How To Build A Brain History And Core Concepts

Goals

To help you understand the history and core concepts of braininspired artificial intelligence.

AI: Not just for old white men

Marina Sarda Gou

Verena Rieser

Simi Awokoya

Early history

400BC - 1900AD

Plymouth Marine Laboratory

Andrew Huxley Alan Hodgkin

Three abstractions

Output Activation

The activity of a neuron, as a single number

Output Activation

Output activation is the sum of the inputs.

Input activation

Input activation = output activation multiplied by the connection strength

Putting it together

Test your understanding...

Test your understanding (2)

Activation function

The logistic function in useful in various ways.

Storing knowledge

Neural Network

Neural Network

Bell	Light	Food
1	0	1
1	1	0

What should W_B and W_L be?

Learning

Learning

CajalKonorskiHebbSpain, 1894Russia, 1948USA, 1949

Hebbian Learning

"When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased"

Hebb

Neurons that fire together wire together

Long-term potentiation

Neurons that fire together wire together

Terje Lømo

Eric Kandel

Aplysia Californica

Hebbian Learning

Neurons that fire together wire together

 $\Delta W_{12} = G \cdot a_1 \cdot a_2$

Hebbian Learning

Neurons that fire together wire together	Trial	Bell	Food	Δw	W
	1	1	1	.1	.1
Bell 0 Food	2	1	1	.1	.2
$\Delta w = G = a$	3	1	1	.1	.3
$\Delta w_{BF} = G \cdot a_B \cdot a_F$	1000	1	1	.1	10 (!)

G= 0.1

Acquisition

Learning tends to slow as it proceeds.

Bush-Mosteller

The more you know, the less you learn.

Student prediction

Bush-Mosteller

The more you know, the less you learn.	Trial	Bell (a ₁)	Food (t)	Δw	W
	1	1	1	.1 × (1-0×1) = .1	.1
Bell	2	1	1	.1 x (11x1) = .09	.19
$\Delta w_{12} = G(t - a_1 w_{12})a_1$		1	1	.1 × (119) = .081	.271
-11_{12}	1000	1	1	$.1 \times (1-1) = 0$	1

Delta rule

Blocking (Kamin, 1969)

Kamin

1. Tone \rightarrow Food 2. Tone + Light \rightarrow Food 3. Light \rightarrow ?

Bush-Mosteller (Blocking)

Bush-Mosteller (Blocking)

Bush-Mosteller (Blocking)

Blocking (Kamin, 1969)

1. Light \rightarrow Food 2. Tone + Light \rightarrow Food 3. Tone \rightarrow Little salivation

Why blocking?

Rescorla-Wagner (1972)

Rescorla

Bush-Mosteller

$\Delta W_{13} = G(t - a_1 W_{1,2})a_1$ Teacher Student prediction

Bush-Mosteller \rightarrow **Rescorla-Wagner**

 $\Delta W_{13} = G(t - a_1 W_{1,2})a_1$ $\Delta w_{13} = G(t - \Sigma a w) a_1$ Teacher Teacher Student prediction Student prediction

Stage 1: Light -> Food

	Trial	Light (a _L)	Food (t)	∆w _{LF}	W_{LF}
(F)	1	1	1	.1 × (1-0) = .1	.1
0	2	1	1	.1 × (11) = .09	.19
$\Delta w = C(t - \nabla w) c$	3	1	1	.1 × (119) = .081	.271
$\Delta w_{LF} = G(t - \Sigma a w) a_{L}$	1000	1	1	.1 x (1-1) = 0	1

G= 0.1

Stage 2: Light + Tone \rightarrow Food

	Trial	Tone (a _T)	Food (t)	Δw_{TF}	W _{TF}
(F)	1	1	1	.1 × (1-1) = 0	0
0	2	1	1	.1 × (1-1) = 0	0
$\Delta w = C(t - \nabla w) c$	3	1	1	.1 × (1-1) = 0	0
$\Delta w_{TF} = G(t - \Sigma a w) a_{T}$	1000	1	1	$.1 \times (1-1) = 0$	0

G= 0.1

Stage 3: Tone \rightarrow ?

Al: Convergence rule

Mathematical proof: anything that can be learned by a single-layer network will be learned by the delta rule.

1958-1969: AI optimism

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

First AI Winter

XOR

"Omelette, with chips or salad"

XOR

"Omelette, with chips or salad"

Limitations of single-layer nets

Perceptrons (1969)

Minksy

Papert

1st Al winter (1974-1980)

Lighthill

"In no part of the field have the discoveries made so far produced the major impact that was then promised"

- Lighthill report (1974)

Solving XOR

Solving XOR

C

Threshold activation

If *in* < *T*, *out* = 0 Otherwise, *out* = *in*

Solving XOR

Backprop

Backpropagation of error

3

 $\Delta w_{13} = G(t - \Sigma aw)a_1$

Teacher

Student prediction

Defining error

 $\Delta w_{13} = G(t - \Sigma aw)a_1$ Teacher Student prediction $E_3 = (t - \Sigma aw)$

 $\Delta w_{13} = G.E_{3.}a_{1}$

History of backprop

Standard story

Runelhart, Hinton & Williams (1986)

Invention of backprop

Kelley (1960)

Werbos (1974)

Invention of backprop

Yann LeCun

Sun-1 (1983) £24,000 in today's money

Connectionism

DAVID'E RUMELHART JAMES L MOCLELLAND, AND THE POP RESEARCH GROUP

JAMES LIMCCLELLAND, DAVID E RUMELHART AND THE PDP RESEARCH GROUP

Power and limitations of backprop

Universal approximators

A multilayer feedforward network, with sufficient hidden units can represent any deterministic mapping between its inputs and its outputs - Hornik, Stinchcombe & White (1989)

Error surface

Error surface

Error surface

Error surface

Interference

"Every time I learn something new, it pushes some old stuff out of my brain" - Homer Simpson

People: Retroactive Interference

Retroactive interference Barnes & Underwood (1959)

<u>List 1 (A-B)</u> dax – regal

List 2 (A-C) dax – cabbage

. . .

Backprop: Catastrophic Interference

Catastrophic interference McCloskey & Cohen (1989)List 1 (A-B) dax – regal . . . List 2 (A-C) dax – cabbage

Neural plausibility

Summary

