

How To Build A Brain

History And Core Concepts

Goals

To help you understand the history and core concepts of braininspired artificial intelligence.

AI: Not just for old white men

Early history

(0.)
e

400BC - 1900AD

Golgi

Neurons

Plymouth
Marine Laboratory

Andrew
Huxley

Alan
Hodgkin

Three abstractions

Output Activation

The activity of a neuron, as a single number

Output Activation

0.02
 0.40
 0.42
 Out $=0.02+0.40=0.42$
 Out $=\Sigma$ in

Output activation is the sum of the inputs.

Input activation

$\mathrm{a}_{\text {out }}=0.2 \times 0.1=0.02$
 $\mathrm{a}_{\text {out }}=\mathrm{a}_{\text {in }} \mathrm{w}$
 0.02

Input activation = output activation multiplied by the connection strength

Putting it together

Test your understanding...

Test your understanding (2)

Activation function

$$
\begin{aligned}
& a_{\text {out }}=\frac{1}{1+e^{-k a_{i}}} \\
& e=-2.72
\end{aligned}
$$

The logistic function in useful in various ways.

Storing knowledge

Neural Network

Neural Network

Bell	Light	Food
1	0	1
1	1	0

What should w_{B} and w_{L} be?

Learning

Hebbian Learning

"When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased"

Hebb

Neurons that fire together wire together

Long-term potentiation

Neurons that fire together wire together

Terje Lømo

Eric Kandel

Aplysia Californica

Hebbian Learning

Neurons that fire together wire together

Hebbian Learning

Neurons that fire together wire together	Trial	Bell	Food	$\Delta \mathrm{W}$	W
	1	1	1	. 1	. 1
	2	1	1	. 1	. 2
	3...	1	1	. 1	. 3
	... 1000	1	1	. 1	10 (!)

Acquisition

Learning tends to slow as it proceeds.

Bush-Mosteller

The more you know, the less you learn.

$$
\Delta w_{12}=G\left(t-a_{1} w_{12}\right) a_{1}
$$

Bush-Mosteller

The more you know, the less you learn.

Trial	Bell $\left(a_{1}\right)$	Food (t)	Δw	w
1	1	1	$.1 \times(1-0 \times 1)=.1$.1
2	1	1	$.1 \times(1-.1 \times 1)=.09$.19
$3 \ldots$	1	1	$.1 \times(1-.19)=.081$.271
. .1000	1	1	$.1 \times(1-1)=0$	1

$\mathrm{G}=0.1$

Delta rule

Blocking (Kamin, 1969)

1. Tone \rightarrow Food
2. Tone + Light \rightarrow Food 3. Light \rightarrow ?

Kamin

Bush-Mosteller (Blocking)

Bush-Mosteller (Blocking)

Bush-Mosteller (Blocking)

Blocking (Kamin, 1969)

1. Light \rightarrow Food
2. Tone + Light \rightarrow Food
3. Tone \rightarrow Little salivation

Why blocking?

Rescorla-Wagner (1972)

Bush-Mosteller

Bush-Mosteller \rightarrow Rescorla-Wagner

Stage 1: Light \rightarrow Food

Trial	Light $\left(\mathrm{a}_{\mathrm{L}}\right)$	Food (t)	$\Delta \mathrm{w}_{\mathrm{LF}}$	W_{LF}
1	1	1	$.1 \times(1-0)=.1$.1
2	1	1	$.1 \times(1-.1)=.09$.19

$$
\begin{array}{lllll}
3 \ldots & 1 & 1 & .1 \times(1-.19)=.081 & .271
\end{array}
$$

$$
\Delta w_{L F}=G(t-\Sigma a w) a_{L}
$$

$$
G=0.1
$$

Stage 2: Light + Tone \rightarrow Food

Trial	Tone $\left(a_{T}\right)$	Food (t)	$\Delta W_{T F}$	$w_{T F}$
1	1	1	$.1 \times(1-1)=0$	0
2	1	1	$.1 \times(1-1)=0$	0

$$
\Delta W_{\mathrm{TF}}=G\left(t-\sum a W\right) a_{\mathrm{T}} \quad \ldots 1000 \quad 1 \quad 1 \quad .1 \times(1-1)=0 \quad 0
$$

$$
\mathrm{G}=0.1
$$

Stage 3: Tone \rightarrow ?

Al: Convergence rule

Mathematical proof: anything that can be learned by a single-layer network will be learned by the delta rule.

1958-1969: Al optimism

"the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

First Al Winter

XOR

"Omelette, with chips or salad"

XOR

"Omelette, with chips or salad"

Limitations of single-layer nets

Perceptrons (1969)

Minksy
Papert

$1^{\text {st }}$ Al winter (1974-1980)

"In no part of the field have the discoveries made so far produced the major impact that was then promised"

- Lighthill report (1974)

Solving XOR

Solving XOR

Threshold activation
If in $<T$, out $=0$
Otherwise, out $=$ in

Solving XOR

Threshold activation

If in $<T$, out $=0$
Otherwise, out $=$ in

Backprop

Backpropagation of error

Defining error

$$
\begin{gathered}
\Delta \mathrm{w}_{13}=\mathrm{G}(\mathrm{t}-\Sigma \mathrm{aw}) \mathrm{a}_{1} \\
\text { Teacher student predicition } \\
\mathrm{E}_{3}=(\mathrm{t}-\Sigma \mathrm{aw}) \\
\Delta \mathrm{w}_{13}=\mathrm{G} \cdot \mathrm{E}_{3} \cdot \mathrm{a}_{1}
\end{gathered}
$$

Input $=.5+.5=1$ Error = ?

Input $=.5+.5=1$ Error = ?

Input $=.5+.5=1$ Error =-1 x-1 = 1

Input $=.6+.6=1.2$

1

.6
0
$121 \begin{aligned} & \text { Input }=1+1-1.2=.8 \\ & \text { Error }=0-.8=-.8\end{aligned}$

History of backprop

Standard story

Rumelhart, Hinton \& Williams (1986)

Invention of backprop

Kelley (1960)

Werbos (1974)

Invention of backprop

Yann LeCun

Sun-1 (1983)
Ł24,000 in today's money

Connectionism

PARALLEL DISTRIBUTED PROCESSING

Explorations in the Morostructure of Cognition Volume 2; Psychologich ard Biological Models

JAMESL MCCLELL AND DAVIO E RUMELHART
AND THE PDP RESEARCH GROUP

Power and limitations of backprop

Universal approximators

A multilayer feedforward network, with sufficient hidden units can represent any deterministic mapping between its inputs and its outputs

- Hornik, Stinchcombe \&

White (1989)

Error surface

Error surface

Error

surface

weight

Error

surface

weight

Interference

"Every time I learn something new, it pushes some old stuff out of my brain"
- Homer Simpson

People: Retroactive Interference

Retroactive interference

 Barnes \& Underwood (1959)List 1 (A-B)
dax-regal

List 2 (A-C)
dax - cabbage

Backprop: Catastrophic Interference

Catastrophic interference McCloskey \& Cohen (1989)

List 1 (A-B)
dax-regal

List 2 (A-C)
dax - cabbage

Summary

