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Chapter 23 

Models of Categorization 

Andy J. Wills 

Abstract 

This chapter reviews some of the main ways in which theories of categorization have 

been expressed in formal, mathematical terms. The focus of the models discussed is the 

categorization of abstract visual forms by adults in situations where prior knowledge is 

unlikely to contribute much to performance. Each of the main components of 

categorization models is discussed: input representations, attentional processes, 

intermediate representations (e.g., prototypes, exemplars), evidential mechanisms (e.g., 

similarity, rules), and decision mechanisms (e.g., the choice axiom; Luce, 1959). Models 

discussed include the Generalized Context Model (Nosofsky, 1986), ALCOVE 

(Kruschke, 1992), prototype models (e.g., Smith & Minda, 1998), clustering models (e.g., 

SUSTAIN; Love, Medin & Gureckis, 2004), and multiprocess models (e.g., COVIS; 

Ashby, Alfonso-Reese, Turken, & Waldron, 1998). 

Key Words: categorization, models, formal, mathematical, connectionist, exemplar, 

prototype, GCM, ALCOVE, COVIS, SUSTAIN 

 

Previous chapters in this volume outlined some of the phenomena and descriptive 

theories in the study of mental categories. The purpose of the current chapter is to 

describe some of the main ways in which theories of categorization have been expressed 

in formal, mathematical terms. Formal description of theories is important to the 
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development of cognitive psychology as a science—it encourages theorists to be explicit 

in their assumptions and to describe their theories in a way that permits independent 

objective verification of the theory’s predictions. Formal description also, in principle, 

permits the possibility of unambiguous rejection of a theory. 

The theories described in this chapter focus on adults categorizing abstract visual 

forms in situations where prior knowledge of real-world categories is unlikely to 

contribute much to performance. The level of experimental control this permits is often 

assumed to assist the development of formal theory. Of course, the study of 

categorization is much broader than the study of the classification of abstract forms, and 

this is reflected in the other chapters of Part IV. 

Another way in which this chapter is narrower than the field it describes is that 

only models that might be loosely described as process models are discussed. Process 

models, at varying levels of abstraction, attempt to characterize the representations and 

information processing assumed to underlie categorization behavior. This tends to be 

done without much consideration of what adaptive purpose categorization might serve. A 

complementary approach is functional modeling, which considers the purposes 

categorization might serve, and then seeks to describe ways in which an optimal system 

(i.e., one with infinite time and resources) might best serve those purposes (Anderson, 

1991; Pothos & Chater, 2002). 

In this chapter, I discuss the components of formal process models of 

categorization. I do this in the order that information is assumed to pass through these 

components (at least in the first instance—models differ in the extent to which they 

assume information flows in both directions). This flow of information is represented 



 986 

schematically in Figure 23.1. Categorization is seldom modeled from a retinal starting 

point—most modelers assume some form of higher level input representation of the 

presented stimulus. The information from this input representation is sometimes 

modulated by attentional mechanisms, usually with attention directed to maximize 

categorization accuracy. The attentionally modulated information from the input 

representations is sometimes assumed to activate one or more intermediate 

representations, which are defined in the coordinates of the input representation system. 

Among the types of intermediate representations assumed are exemplars, prototypes, 

clusters, and distributed representations. 

<insert Figure 23.1 here> 
Information from the intermediate representations is assumed to activate one or 

more category representations. The process by which a category representation or 

representations are activated is described, for the purposes of this chapter, as an 

evidential mechanism. Examples of evidential mechanisms include associative links, 

decision bounds, and rules. 

Sometimes an evidential mechanism will activate more than one category 

representation. In the laboratory, and in everyday life, there is often a requirement to 

produce a categorical response (i.e., “it’s a dog,” rather than “it’s quite similar to a dog, a 

bit similar to a cat, and not very similar at all to a bagel”). Therefore, there is a need for a 

decision mechanism that is able to turn graded information into a categorical response. 

This categorical decision ultimately results in an observable action, although the stages of 

information processing beyond the categorical decision are seldom considered by models 

of categorization. 
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This introductory section comprised a brief overview of the representations and 

processes generally assumed in models of categorization. In the sections that follow, 

some of the main approaches to modeling each of these components are discussed. 

Input Representations 

All formal models inevitably make assumptions about the nature of the information that 

is available to them at input. In the case of models of categorization, those assumptions 

generally take one of two forms: geometric models and featural models. 

Featural (also known as elemental or microfeatural) models assume that any 

presented stimulus, even an apparently simple one such as a monochromatic light, is 

represented by a number of features. Two stimuli are similar to the extent that they have 

common features and the extent to which they do not have distinctive features. Some of 

the assumptions often found in a featural approach are that any given stimulus activates a 

relatively small subset of the features within the representational system (sparse coding; 

e.g., Granger, Ambros-Ingerson, & Lynch, 1989), that the subset of features activated by 

a given stimulus varies somewhat from one presentation to the next (stimulus sampling; 

Estes, 1950), and that features can have graded levels of activity (rather than simply 

being either “on” or “off”). Featural accounts have a long history (e.g., Estes, 1950), and 

they are also at the heart of some recent (Harris, 2006; McLaren & Mackintosh, 2000, 

2002) and some very famous (McClelland & Rumelhart, 1985; Tversky, 1977) formal 

models. 

Geometric models have a similarly impressive pedigree (Ashby & Gott, 1988; 

Nosofsky, 1986; Shepard, 1958) and, in recent times, have been more common in the 

modeling of adult categorization data than have featural models. This is in large part due 
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to the success of two geometric models: the Generalized Context Model (Nosofsky, 

1986) and General Recognition Theory (Ashby & Gott, 1988). Geometric models assume 

that any presented stimulus can be represented as a point (or a distribution; Ashby & 

Gott, 1988) in a psychological similarity space. Two stimuli are similar to the extent that 

they are close to each other in this space. Figure 23.2A illustrates this. The Generalized 

Context Model (GCM) assumes that similarity is an exponential decay function of 

distance (see Fig. 23.2B; Shepard, 1958). Sometimes, a Gaussian function is used instead 

(Nosofsky, 1991; this approximates trial-to-trial variability in the perception of highly 

confusable stimuli in models that represent individual stimuli as points in space, rather 

than as distributions; Ennis, 1988). 

<Figure 23.2 here> 
Although in common usage “distance” implies Euclidean distance (Fig. 23.2C), 

other interpretations are possible, for example, “city-block” distance (Fig. 23.2D). The 

GCM typically employs Euclidean distance where stimulus dimensions are integral (e.g., 

hard to selectively attend, such as hue and saturation; Garner, 1978) and city-block 

distance where stimuli are separable (the antonym of integral). 

There are well-known statistical methods for deriving a geometric representation 

of a stimulus set from data such as similarity ratings, or the extent to which two stimuli 

are confused in an identification task. The statistical method, known as multidimensional 

scaling (e.g., Kruskal, 1964), is akin to deriving the relative position of towns from the 

distances between them. To the extent that multidimensional scaling produces a good 

approximation to the psychological similarity data in a low-dimensional space (and it 

often does; Shepard, 1987), geometric models can provide an elegant and readily 

comprehensible representation of the information available to the categorization process. 
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The representational power of both geometric and featural systems is greater than 

might initially be apparent. For example, it is possible to approximate continuous 

dimensions with an arbitrary degree of precision using a featural representation (Restle, 

1959; Shanks & Gluck, 1994). It is also possible to represent asymmetrical similarity (an 

ellipse is more similar to a circle than a circle is to an ellipse) in a geometric model, 

despite the fact that it is self-evidently true that the distance from A to B must be equal to 

the distance from B to A. Geometric models can account for asymmetric similarity by 

assuming stimulus-specific biases (a circle is more easily brought to mind than an 

ellipse). In fact, a geometry-plus-bias model is mathematically equivalent to certain 

featural models (Holman, 1979). 

Mechanisms of Attention 

Some models of categorization assume that the information provided by the input 

representations can be modulated by attentional processes, and that the function of this 

attentional modulation is to increase categorization accuracy. Attentional modulation is 

sometimes assumed to operate at the level of the dimensions of a geometric input 

representation (Nosofsky, 1986; see also Sutherland & Mackintosh, 1971) and sometimes 

assumed to operate in a more stimulus-specific or feature-specific manner (Kruschke, 

2001; Mackintosh, 1975). At the level of dimensions, attentional modulation can be 

conceptualized as the stretching and compressing of a geometric input representation 

along one or more of its dimensions. Figures 23.3A and 23.3B illustrate this form of 

attentional modulation; note that the effect of the modulation is that the within-category 

similarities are increased and the between-category similarities are decreased. This will 

make it easier for the model to correctly categorize the presented stimuli, and it is this 
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kind of process that underlies the success of certain models in capturing the relative 

difficulty people have in acquiring different category structures (Nosofsky, Gluck, 

Palmeri, McKinley, & Glauthier, 1994). For example, the category structure in Figure 

23.3C is harder for people to learn than the structure in Figure 23.3A (Kruschke, 1993), 

and one appealing explanation for this is that selective attention to one dimension 

facilitates the learning of the latter, but not the former, problem. 

<insert Figure 23.3 here> 
Similar processes of attentional modulation can also be applied to models with 

featural input representations. In these kinds of models (e.g., Mackintosh, 1975; 

Kruschke, 2001), attention to a feature is assumed to increase to the extent that it is a 

better predictor of the category label than other features that are simultaneously present. 

Symmetrically, attention to a feature is assumed to decrease if it is a worse predictor of 

the category label than other present features. The consequence of this attentional 

allocation will be to increase categorization accuracy, and the existence of such a process 

in humans is supported by behavioral (Le Pelley & McLaren, 2003; Lochmann & Wills, 

2003), eye-tracking (Kruschke, Kappenman, & Hetrick, 2005), and electrophysiological 

(Wills, Lavric, Croft, & Hodgson, 2007) data. Eye-tracking data are also consistent with 

dimensional allocation of attention (Rehder & Hoffman, 2005). 

In addition to these processes of selective attention, some models assume that 

overall differentiation of the input representation is possible—typically as a result of 

extended exposure to the stimuli. Within geometric input representations, this can be 

conceptualized as an overall expansion of psychological similarity space (Fig. 23.3D; 

Nosofsky, 1986). With featural input representations, differentiation can be represented 

by a reduction in the activity levels of features that stimuli have in common (McLaren & 
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Mackintosh, 2000, 2002). One notable aspect of a featural account of stimulus 

differentiation is that it predicts when exposure to stimuli will aid the subsequent 

categorization of those stimuli, and when exposure will impair subsequent classification 

(Wills & McLaren, 1998: Wills, Suret, & McLaren, 2004). Another phenomenon that is 

naturally conceptualized within a featural representation is that of unitization. There is 

evidence that, with extended experience, the components of multiattribute stimuli become 

“psychologically fused” into a more unitary representation (Goldstone, 2000). The 

formation of associations between featural input representations is one way to 

conceptualize the process of unitization (McLaren & Mackintosh, 2000, 2002). 

Intermediate Representations 

Some models of categorization assume the presence of intermediate representations that 

mediate between the (sometimes attentionally modulated) input representation and the 

evidential process. Intermediate representations are generally expressed in the same mode 

of representations as the input representation. In other words, if a geometric input 

representation is assumed, then the intermediate representations are also expressed in that 

geometric space. If the input representation is featural, then so is the intermediate 

representation. For illustrative convenience, this section will describe most intermediate 

representations geometrically, but they can also be expressed in featural terms. 

The assumed nature of the intermediate representations varies greatly between 

different accounts of categorization. In this section, I will outline some of the types of 

intermediate representation that have been assumed. 

Cluster Representations 



 992 

Cluster representations (e.g., Anderson, 1991; Love et al., 2004; Vanpaemel & Storms, 

2008) are activated by a region of the input representation. Clusters are usually 

constrained to represent coherent regions of the input representation, and they are 

generally assumed to be some form of average of the stimuli that activate the cluster 

representation. For example, Figure 23.4 shows one possible way in which the 16 stimuli 

shown might result in four cluster representations (marked “C”). Note that, as shown in 

this example, there is no necessity for a cluster representation to correspond exactly with 

any of the stimuli the participant has experienced. 

<insert Figure 23.4 here> 
Prototype representations (e.g., Reed, 1972; Smith & Minda, 1998) and exemplar 

representations (Medin & Schaffer, 1978; Generalized Context Model, Nosofsky, 1986) 

are special types of cluster representation. In prototype-based representation, each 

category label is assumed to result in exactly one cluster representation (marked “P” in 

Fig. 23.4). In exemplar-based representation each experimenter-defined stimulus is 

assumed to correspond to exactly one cluster (the 16 circles in Fig. 23.4). Some of the 

better-known debates in categorization research have centered on the question of whether 

exemplar-based or prototype-based representation is the better basis for models of 

categorization. One possible answer (Love et al., 2004) is that cluster size is a function of 

the stimuli participants are presented with and the level of experience participants have 

with those stimuli (Smith & Minda, 1998). 

Other evidence that clusters less specific than exemplars are formed includes the 

effect of partially reversing a category structure. For example, train participants on 16 A 

stimuli and 16 B stimuli. Now train a partial reversal of those category assignments—for 

example, 6 As are now labeled B, and 6 Bs are now labeled A—and do not present the 
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remaining 20 stimuli during this partial reversal. Under some circumstances (e.g., Wills, 

Noury, Moberly, & Newport, 2006) participants seem to assume that these remaining 

stimuli have also reversed their category membership. One straightforward explanation of 

this result is that the partial reversal leads participants to reverse the mapping between 

representations of the categories and representations of their labels. For this explanation 

to work, the representations have to be less specific than exemplar representations. One 

possible solution to this problem for exemplar-based models is to assume another, 

categorical, representation layer in addition to an exemplar representation layer 

(Kruschke, 1996). 

Distributed Hidden-Layer Representations 

Some of the best known models of certain cognitive processes assume that distributed 

representations mediate between input and output representations (for example, 

Seidenberg & McClelland’s, 1989, account of word naming). Distributed hidden-layer 

representations are most naturally conceived in featural terms, although geometric 

interpretations are also possible. Each input representation produces a set of activities 

across the features of the distributed hidden-layer representation. This pattern of hidden-

layer activities arises through the, initially random, connections from the input 

representation. The hidden-layer representations are assumed to develop over time by a 

process of error attribution and reduction, typically via the back-propagation algorithm 

(Rumelhart, Hinton, & Williams, 1986; Werbos, 1974).  

Distributed hidden-layer representations are relatively rare in models of 

categorization, but they have been used with some success in models that attempt to 
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characterize the effects of hippocampal damage on the ability to categorize (Gluck & 

Myers, 1997). 

Evidential Mechanisms 

Most models of categorization convert the information from the intermediate 

representations (or input representations) into a set of evidence magnitudes, generating 

one evidence magnitude for each category under consideration. So, for example, a 

particular pattern of activity in the intermediate representations might give the evidence 

magnitudes of 0.87 and 0.42 for categories A and B, respectively. It is these numbers that 

eventually give rise to a decision about the category membership of the presented item, 

via a categorical decision process. In the next three sections, some of the more common 

ways of calculating evidence terms are discussed. 

Summed Similarity 

Probably the most common form of evidence magnitude is a summed similarity (e.g., 

Nosofsky, 1986; Smith & Minda, 1998). When a stimulus X is presented, the evidence 

that it belongs to category Y is assumed to be the sum of the similarity of stimulus X to 

all relevant intermediate representations associated with category Y. For example, if the 

intermediate representation is exemplar based, then the evidence magnitude for category 

Y is the sum of the similarities of stimulus X to all stored exemplars known to belong to 

category Y. Similarity is calculated in the manner described in the “Input 

Representations” section of this chapter. For example, in a geometric exemplar model, 

similarity is related to distance in a psychological space by an exponential or Gaussian 

decay function (see Fig. 23.2). In featural model, similarity is an increasing function of 

the number of features shared, and a decreasing function of the number of features that 
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are different. Stewart and Brown (2005) have recently proposed a geometric exemplar-

based model that employs both similarity to category Y exemplars, and dissimilarity to 

members of other categories, in the calculation of the evidence term for category Y. 

Decision Bounds 

Decision bounds are most naturally conceptualized as working directly on a geometric 

input representation. The input representation is often expressed in terms of physical 

measurements of the stimuli (e.g., size), rather than a psychological space derived from 

similarity or confusability data. A decision bound is a line through that space that 

separates one category from another (see Fig. 23.5A). Sometimes that line is assumed to 

be straight (Ashby & Gott, 1988); sometimes it is assumed to be quadratic (Ashby & 

Maddox, 1992). In some applications of a decision-bound evidential process, the decision 

bound is assumed to be placed optimally (Ashby & Gott, 1988); in other words, its form 

and location is such that categorization accuracy is maximized. 

The position of the presented stimulus relative to that line determines its category 

membership. As should be apparent, there are certain category structures that cannot be 

captured by a single linear or quadratic decision bound. An example is given in Figure 

23.5B; a potential solution is to assume that more than one decision bound is used. 

Note that, unlike a summed similarity mechanism, on any given presentation of a 

stimulus the evidence magnitudes for all categories except one are zero, and for the 

remaining category the evidence is maximal. In Figure 23.5A, the presentation of any 

stimulus in category 1 results in maximal evidence magnitude for category 1 and zero 

evidence magnitude for category 2. However, decision-bound models typically assume 

perceptual noise (Ashby & Gott, 1988), so a given stimulus will not always be 
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represented in exactly the same location in the input representation. Some decision-bound 

models also assume decisional noise—in other words, that the decision bound varies 

somewhat from decision to decision. 

One striking aspect of a decision-bound evidential mechanism is that it is distance 

from the decision boundary, rather than distance from the known examples of a category, 

that determines categorization accuracy. This is illustrated in Figure 23.5C, where the 

novel stimuli marked “2” are predicted to be classified at least as accurately as the novel 

stimuli marked “1,” and more accurately if one assumes substantial perceptual and 

decisional noise. Hence, a decision-bound evidence mechanism can be said to extrapolate 

from the known members of category. Extrapolation is observed in categorization 

experiments, and at least some extrapolation phenomena seem difficult to explain without 

positing a decision-bound evidence mechanism (Denton, Kruschke, & Erickson, 2008). 

<insert Figure 23.5 here> 
Verbalizable Rules 

The idea that people make decisions on the basis of “rules” is a pervasive concept in 

psychology and in everyday life, but what does it mean to say performance is “rule-

based”? Decision-bound theories seem in some ways to be quite rule-like, for example, in 

their ability to predict extrapolation. On the other hand, some would argue (Ashby et al., 

1998) that the decision bound in Figure 23.5A is unlikely to represent a rule, because it is 

not easily verbalizable. A verbal representation of this decision bound would have to be 

of the form “It’s category 1 if it’s more obtuse than it is large, and category 2 if it’s less 

obtuse than it is large.” Among the problems with formulating and applying a rule of this 

type is that the things being compared have different units. In other words, what does it 

mean to say something is more obtuse than it is large? In contrast, the rule “category A is 
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composed of small obtuse items” is readily formulated verbally and can be applied 

without having to compare things measured in different units. 

Hence, what some theorists mean when they talk of a categorization model being 

rule based is a decision bound that can be readily expressed in verbal terms. Limiting the 

concept of “rules” to things that are verbalizable is not an idea that is universally 

accepted in psychology, but it does currently have currency in the modeling of 

categorization. This view of rules as verbalizable naturally leads to the assumption that 

easy-to-verbalize rules (e.g., “Category A is blue”) are more likely to be employed than 

hard-to-verbalize rules (e.g., “Category A is small and blue, or large and red”). This 

assumption is instantiated in some rule-based models of categorization such as RULEX 

(Nosofsky, Palmeri, & McKinley, 1994) and COVIS (Ashby et al., 1998). The extent to 

which participants spontaneously prefer simple rules over complex rules depends on the 

time available for a decision (e.g., Milton, Longmore, & Wills, 2008), with greater 

preference for complex rules where time permits. Hence, while rules are sometimes 

simple, simplicity should not be considered a defining property of a rule (although see 

Pothos, 2005, for a contrasting perspective). Finally, it is worth noting that there are some 

categories that seem to be rule based but not describable in terms of a decision bound, for 

example, the category of prime numbers. 

Decisional Mechanisms 

In some models, the evidential mechanisms themselves result in a categorical decision 

(e.g., certain decision-bound models; see earlier). However, in most models, the output of 

the evidential mechanism is a set of non-zero evidence magnitude terms. For example, 

the evidence terms for a presented item being a cat, a dog, or a bagel might be 0.83, 0.41, 
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and 0.05, respectively. In many situations, a decision is required—should I call this thing 

a cat, a dog, or a bagel? 

The seemingly obvious answer to this question is that I should call it a cat, 

because that is the category for which the evidence is greatest. This strategy of “pick the 

biggest” is not, however, what the vast majority of models of categorization do. Instead, 

they engage in a form of probability matching. Applying the simplest form of probability 

matching to the earlier example, the probability of the model responding “cat” would be 

0.83/(0.83 + 0.41 + 0.05) = 0.64. So despite “cat” being the most likely answer, that 

answer is only produced on 64% of occasions. This decision mechanism is generally 

known as the Luce choice axiom (Luce, 1959). 

Although it is well known that organisms probability match (e.g., Herrnstein, 

1961), it is generally accepted that the level of probability matching seen in studies of 

categorization is much lower than a simple application of the Luce choice axiom would 

predict (Ashby & Gott, 1988; McKinley & Nosofsky, 1995). One solution to this problem 

is to transform the evidence terms (v) in some way—for example, by using vk or ekv. 

Increasing the value of k reduces the level of probability matching predicted by the 

model—large values of k approximate a “pick the biggest” strategy. Applying v10 to our 

earlier example, the probability of responding “cat” exceeds 0.999. 

The fact that the Luce choice axiom can approximate the behavior of a pick-the-

biggest strategy does not imply that the two formulations are equivalent. In fact, Yellott 

(1977) demonstrated mathematically that noisy pick-the-biggest (in other words, picking 

the biggest under conditions where the evidence terms for a given item vary) is not 

equivalent to the Luce choice axiom in virtually all situations that involve three or more 
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response options. In cases where researchers have investigated the nature of the decision 

mechanism in three-choice situations, the empirical evidence favors Thurstonian (i.e., 

noisy pick-the-biggest) choice over the Luce choice axiom (Wills, Reimers, Stewart, 

Suret, & McLaren, 2000). 

Multiprocess Models 

Over the last decade, it has become increasingly common to propose that there are 

multiple categorization processes at work. For example, ATRIUM (Erickson & 

Kruschke, 1998) assumes the presence of both a decision-bound process and an 

exemplar-based process. Each of these processes provides a set of evidence terms for the 

possible category responses, and hence part of the decision process involves the 

integration of this information. In ATRIUM, this process involves keeping track of the 

past success of each process in providing the correct answer for the stimulus presented. 

The COVIS model (Ashby et al., 1998) also assumes a rule-like and exemplar-like 

process, although the details are different. 

The Time Course of Categorization 

To summarize what has been said so far, models of categorization assume the passing of 

information from attentionally modulated input representations, through intermediate 

representations, to evidential and decisional processes. A categorical decision is the 

result. In this context, the time course of categorization can be considered in two ways. 

First, one can consider the time course within a single decision—how is information 

accumulated over the time course from stimulus presentation to decision, and what 

additional phenomena can be captured by modeling this accumulation of information? 

Second, one can consider the time course across multiple decisions—what are the 
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mechanisms that allow the system’s ability to categorize to improve with experience? 

These two questions are considered in the following sections. 

Single-Decision Time Course 

There are two main ways information is assumed to accumulate over the course of a 

single decision: at the level of input representations, and at the level of categorical 

decisions. At the level of input representations, models such as the Extended Generalized 

Context Model (Lamberts, 1995) assume that the dimensions of the input representation 

become available at different intervals after the presentation of the stimulus, with the 

average interval being a function of both the perceptual salience of that dimension and its 

usefulness in determining category membership of the item. Evidence in support of this 

form of information accumulation includes the fact that time pressure can systematically 

change the category into which a stimulus is placed. For example, under time pressure the 

stimulus might be systematically considered to be in category A, while in the absence of 

time pressure, it was systematically considered to be in category B. Such “cross-over” 

effects (Lamberts & Freeman, 1999) can be explained by assuming that, under time 

pressure, not all of the dimensions of the stimulus representation are available to later 

components of the categorization process (Lamberts, 1995; Milton et al., 2008). 

Some models, such as the Exemplar-based Random Walk model (Nosofsky & 

Palmeri, 1997), the EGCM-RT model (Lamberts, 2000), and the winner-take-all model 

(Wills & McLaren, 1997), also assume that information accumulates over time at the 

level of categorical decisions. Making this assumption allows these models to predict the 

time taken to make a decision, in addition to the more standard prediction of the 

probability with which a particular category will be chosen. 
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Multiple-Decision Time Course 

The discussion of the components of categorization models in this chapter assumed the 

presence of a lot of information. Models are assumed to have information about which 

dimensions and/or features to attend to in order to maximize accuracy. They are assumed 

to have information about how the structure of the stimuli can best be represented within 

the model’s chosen intermediate representations (e.g., prototypes). Models are also 

assumed to know which intermediate representations correspond to which category labels 

and/or which decision bound to use to maximize categorization accuracy. How is this 

information acquired? 

Perhaps surprisingly, many models of categorization have no specific mechanisms 

by which they can acquire the information they are assumed to have; those that do mainly 

rely on the concept of reduction of prediction error through, for example, changing the 

structure of associative connections between representations (Gluck & Bower, 1988; 

Rescorla & Wagner, 1972; Widrow & Hoff, 1960). 

This principle is illustrated in the very simple featural model shown in Figure 

23.6. The model is too simplistic to be a convincing account of categorization, but it 

serves to illustrate the principle of the reduction of prediction error. In an experiment 

where participants have to predict which fictitious disease a patient has on the basis of his 

symptoms (e.g., Gluck & Bower, 1988), it is presumably the case that participants will 

not start the experiment with the information required to solve it. This state of affairs is 

illustrated in Figure 23.6 by assuming a series of associations of arbitrary strength 

between the input and category representations. Now assume that the participant sees a 

patient with symptoms 1 and 2. On the basis of the connections shown in Figure 23.6, 
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there is more evidence (within this initially arbitrary knowledge) that the patient has 

disease 1 than that he has disease 2. Assuming a take-the-best decision mechanism, the 

model predicts that the patient has disease 1 but is told that the patient actually has 

disease 2. The model has therefore made a prediction error. To reduce the likelihood of a 

future error, the model increases the strength of the connection between symptom 1 and 

disease 2 (S1-D2), increases S2-D2, decreases S1-D1, and decreases S2-D1. In this 

particular instantiation of prediction-error-driven learning, connections from absent 

symptoms (symptom 3) do not change. The process just described is approximately that 

undertaken by the Widrow-Hoff rule (1960), and it is closely related to the Rescorla-

Wagner theory (1972) and the LMS rule (Gluck & Bower, 1988). 

<insert Figure 23.6 here> 
The acquisition of other information within the categorization process is also 

commonly assumed to be driven by prediction error. For example, in the ALCOVE 

model (Kruschke, 1992), selective attention to the stimulus dimensions that produce 

prediction errors is reduced, and selective attention to the stimulus dimensions that 

reduce error is increased. The McLaren and Mackintosh model (2000, 2002) accounts for 

unitization and differentiation by assuming that the system attempts to predict the co-

occurrence of stimulus features, and that associative links are modified such that 

prediction errors are reduced. The SUSTAIN model (Love et al., 2004) assumes that a 

new cluster representation is formed when the existing clusters fail to predict the category 

membership of the presented stimulus 

Role of Feedback 

The concept of prediction error, discussed earlier, could be taken to imply that category 

learning is only possible where some external agent (e.g., a teacher) or the environment 
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provides specific information about the category membership of presented stimuli. This is 

not the case; category learning can and does occur in the absence of feedback (e.g., Homa 

& Cultice, 1984; Wills & McLaren, 1998). Relatively few models of categorization can 

account for this phenomenon. Those that can—such as Adaptive Resonance Theory 

(Grossberg, 1976), the Rumelhart and Zipser model (1986), and SUSTAIN (Love et al., 

2004)—do so by assuming that the categorical decision produced by the model is correct, 

and adjusting associative strengths and other parameters in the same way as if “correct” 

feedback had been received. Where the stimuli presented to the model are well structured 

(as in, for example, Fig. 23.5A), such models are able to produce categorical 

representations that capture much of that structure. 

Conclusions and Future Directions 

Over the last 35 years, there has been a great deal of progress in the modeling of 

categorization. Since Hull’s work (Hull, 1920) and, perhaps more famously, the work of 

Bruner and colleagues (Bruner, Goodnow, & Austin, 1956), the field had been steadily 

accumulating empirical phenomena, but it was not until the early 1970s (e.g., Reed, 

1972) that theories of these phenomena started routinely taking mathematical form. The 

late 1970s to the mid-1990s saw the introduction and development of a number of still 

highly influential single-process models, such as the Generalized Context Model 

(Nosofsky, 1986) and General Recognition Theory (Ashby & Gott, 1988). Toward the 

end of the 1990s, there was increasing recognition that categorization may involve more 

than one competing process, and the development of multiprocess theories such as 

COVIS (Ashby et al., 1998) and ATRIUM (Erickson & Kruschke, 1998), and also the 

idea that intermediate representations may develop and change in specificity over time 



 1004 

(e.g., Smith & Minda, 1998). COVIS is also notable in that it is a theory of categorization 

specified in both formal mathematical terms and related to the assumed underlying 

neuroscience (another example of this combined approach is the Gluck-Myers model; 

e.g., Gluck & Myers, 1997). 

The first decade of the 21st century saw a rapidly increasing data set on the 

neuroscience of categorization and the development of existing theories to account for 

these data (e.g., Ashby, Ennis & Spiering, 2007). It also saw attempts to expand the range 

of behavioral phenomena to be modeled to include, for example, classification in the 

absence of feedback, classification and feature inference (e.g., Love et al., 2004), and the 

effects of background knowledge (e.g., Rehder & Murphy, 2003). The broadening of data 

to both more behavioral phenomena and to neuroscientific data is very welcome, as both 

sets of information should serve to constrain and reduce the number of formal models 

that remain plausible accounts of the known phenomena. 

In conclusion, formal modeling of psychological phenomena is a complex and 

time-consuming task. What indicates that it is a worthwhile enterprise? Probably the 

single biggest advantage of formal modeling over more informal forms of theorizing is 

that the ability of a formal theory to encompass an empirical phenomenon is 

unambiguously determinable. This can sometimes lead to surprising conclusions. For 

example, asymmetry in similarity relations (an ellipse is more similar to a circle than a 

circle is to an ellipse) seems, informally, to be incompatible with the idea that similarity 

relations can be represented in a geometric space. Yet categorization models employing a 

geometric space can unambiguously be demonstrated to be able to capture certain 

asymmetric similarity relations (Nosofsky, 1991). Another example is that some 
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philosophers have argued the concept of similarity is ill defined because any two objects 

have an arbitrary number of things in common (e.g., An ostrich and an aircraft carrier? 

Both weigh more than one gram, neither can fly, both can be found on the Earth, both can 

carry people, etc.). This is known as Goodman’s paradox (Goodman, 1972). Models of 

categorization may help us work through Goodman’s paradox by specifying, for 

example, the ways in which attention to features is directed through experience. 

The unambiguous specification of theory that formal modeling brings should also, 

in principle, confer two further advantages. First, it should be possible to compare 

different theories in an unambiguous manner and come to a consensual conclusion about 

which theory encompasses more of the known empirical phenomena. Second, the formal 

specification of theories of psychological processes should bring with it the possibility of 

re-creating those processes in artificial systems (automated cognition). However, the 

potential of both these aspects currently remains largely unfulfilled in the formal 

modeling of categorization. The relative adequacy of different models of categorization is 

seldom systematically compared, and never across a broad range of empirical 

phenomena. Perhaps as a result of this, the field continues to have a large range of 

competing formal theories with no consensus over their relative adequacy. The lack of 

such consensus may in part explain the relative lack of successes in the application of 

formal categorization theory to the development of automated cognition. The resolution 

of these issues is the single biggest challenge that the formal modeling of categorization 

must address in the coming years. 

References 



 1006 

Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological 

Review, 98(3), 409–429. 

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A 

neuropsychological theory of multiple systems in category learning. 

Psychological Review, 105(3), 442–481. 

Ashby, F. G., Ennis, J. M., & Spiering, B. J. (2007). A neurobiological theory of 

automaticity in perceptual categorization. Psychological Review, 114, 632–656. 

Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of 

multidimensional stimuli. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 14(1), 33–53. 

Ashby, F. G., & Maddox, W. T. (1992). Complex decision rules in categorization: 

Contrasting novice and experienced performance. Journal of Experimental 

Psychology: Human Perception and Performance, 18, 50–71. 

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. New York: 

Wiley. 

Denton, S. E., Kruschke, J. K., & Erickson, M. A. (2008). Rule-based extrapolation: A 

continuing challenge for exemplar models. Psychonomic Bulletin and Review, 

15(4), 780–786. 

Ennis, D.M. (1988). Confusable and discriminable stimuli: Comment on Nosofsky (1986) 

and Shepard (1986). Journal of Experimental Psychology: General, 117, 408–

411. 

Erickson, M. A., & Kruschke, J. K. (1998). Rules and exemplars in category learning. 

Journal Of Experimental Psychology: General, 127(2), 107–140. 



 1007 

Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 

94–107. 

Garner, W. R. (1978). Aspects of a stimulus: Features, dimensions and configurations. In 

E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 99–133). 

Hillsdale, NJ: Erlbaum. 

Gluck, M. A., & Bower, G. H. (1988). Evaluating an adaptive network model of human 

learning. Journal of Memory and Language, 27, 166–195. 

Gluck, M. A., & Myers, C. E. (1997). Psychobiological models of hippocampal function 

in learning and memory. Annual Review of Psychology, 48, 481–514. 

Goldstone, R. L. (2000). Unitization during category learning. Journal of Experimental 

Psychology: Human Perception and Performance, 26(1), 86–112. 

Goodman, N. (1972). Seven strictures on similarity. In N. Goodman (Ed.), Problems and 

projects (pp. 437–447). New York: Bobbs-Merrill. 

Granger, R., Ambros-Ingerson, J., & Lynch, G. (1989). Derivation of encoding 

characteristics of layer II cerebral cortex. Journal of Cognitive Neuroscience, 1, 

61–87. 

Grossberg, S. (1976). Adaptive pattern classification and universal recoding: Part I. 

Parallel development and coding of neural feature detectors. Biological 

Cybernetics, 23, 121–134. 

Harris, J. A. (2006). Elemental representations of stimuli in associative learning. 

Psychological Review, 113, 584–605. 



 1008 

Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of 

frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4, 

267–272. 

Holman, E. W. (1979). Monotonic models for asymmetric proximities. Journal of 

Mathematical Psychology, 20, 1–15. 

Homa, D., & Cultice, J. C. (1984). Role of feedback, category size, and stimulus 

distortion on the acquisition and utilization of ill-defined categories. Journal of 

Experimental Psychology: Learning, Memory and Cognition, 10(1), 83–94. 

Hull, C. L. (1920). Quantitative aspects of the evolution of concepts: An experimental 

study. Psychological Monographs, 28(1), No. 123. 

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category 

learning. Psychological Review, 99, 22–44. 

Kruschke, J. K. (1993). Human category learning: Implications for backpropagation 

models. Connection Science, 5(1), 3–36. 

Kruschke, J. K. (1996). Dimensional relevance shifts in category learning. Connection 

Science, 8(2), 225–247. 

Kruschke, J. K. (2001). Toward a unified model of attention in associative learning. 

Journal of Mathematical Psychology, 45, 812–863. 

Kruschke, J. K., Kappenman, E. S., & Hetrick, W. P. (2005). Eye gaze and individual 

differences consistent with learned attention in associative blocking and 

highlighting. Journal of Experimental Psychology-Learning Memory and 

Cognition, 31(5), 830–845. 



 1009 

Kruskal, J. (1964). Multidimensional scaling by optimizing goodness-of-fit to a 

nonmetric hypothesis. Psychometrika, 29, 1–28. 

Lamberts, K. (1995). Categorization under time pressure. Journal of Experimental 

Psychology: General, 124(2), 161–180. 

Lamberts, K. (2000). Information-accumulation theory of speeded categorization. 

Psychological Review, 107(2), 227–260. 

Lamberts, K., & Freeman, R. P. J. (1999). Building object representations from parts: 

Tests of a stochastic sampling model. Journal of Experimental Psychology: 

Human Perception and Performance, 25(4), 904–926. 

Le Pelley, M. E., & McLaren, I. P. L. (2003). Learned associability and associative 

change in human causal learning. Quarterly Journal of Experimental Psychology, 

56B, 68–79. 

Lochmann, T., & Wills, A.J. (2003). Predictive history in an allergy prediction task. In F. 

Schmalhofer, R. M. Young, & G. Katz (Eds.), Proceedings of EuroCogSci 03: 

The European Cognitive Science Conference (pp. 217–222). Mahwah, NJ: 

Erlbaum. 

Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of 

category learning. Psychological Review, 111(2), 309–332. 

Luce, R. D. (1959). Individual choice behavior. New York: Wiley. 

Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli 

with reinforcement. Psychological Review, 82, 276–298. 



 1010 

McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the representation 

of general and specific information. Journal of Experimental Psychology: 

General, 114(2), 159–188. 

McKinley, S. C., & Nosofsky, R. M. (1995). Investigations of exemplar and decision-

bound models in large-size, ill-defined category structures. Journal of 

Experimental Psychology: Human Perception and Performance, 21, 128–148. 

McLaren, I. P. L., & Mackintosh, N. J. (2000). An elemental model of associative 

learning: I. Latent inhibition and perceptual learning. Animal Learning and 

Behavior, 28, 211–246. 

McLaren, I. P. L., & Mackintosh, N. J. (2002). Associative learning and elemental 

representation: II. Generalization and discrimination. Animal Learning and 

Behavior, 30, 177–200. 

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. 

Psychological Review, 85(3), 207–238. 

Milton, F., Longmore, C. A., & Wills, A. J. (2008). Processes of overall similarity sorting 

in free classification. Journal of Experimental Psychology: Human Perception 

and Performance, 34(3), 676–692. 

Nosofsky, R. M. (1986). Attention, similarity and the identification-categorization 

relationship. Journal of Experimental Psychology: General, 115(1), 39–57. 

Nosofsky, R. M. (1991). Stimulus bias, asymmetric similarity, and classification. 

Cognitive Psychology, 23, 94–140. 

Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C., & Glauthier, P. (1994). 

Comparing models of rule-based classification learning: A replication and 



 1011 

extension of Shepard, Hovland, and Jenkins (1961). Memory and Cognition, 

22(3), 352–369. 

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of 

speeded classification. Psychological Review, 104(2), 266–300. 

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-exception model of 

classification learning. Psychological Review, 101(1), 53–79. 

Pothos, E. M. (2005). The rules versus similarity distinction. Behavioral and Brain 

Sciences, 28, 1–49. 

Pothos, E. M., & Chater, N. (2002). A simplicity principle in unsupervised human 

categorization. Cognitive Science, 26, 303–343. 

Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 382–

407. 

Rehder, B., & Hoffman, A.B. (2005). Eyetracking and selective attention in category 

learning. Cognitive Psychology, 51, 1–41. 

Rehder, B., & Murphy, G. L. (2003). A knowledge-resonance (KRES) model of category 

learning. Psychonomic Bulletin and Review, 10, 759–784. 

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations 

in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. 

F. Prokasy (Eds.), Classical conditioning II: Current research (pp. 64–99). New 

York: Appleton-Century-Crofts. 

Restle, F. (1959). A metric and an ordering on sets. Psychometrika, 24(3), 207–220. 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal 

representations by error propagation. In D. E. Rumelhart & J. L. McClelland 



 1012 

(Eds.), Parallel distributed processing: Explorations in the microstructure of 

cognition (Vol. 1, pp. 318–362). Cambridge, MA: MIT Press. 

Rumelhart, D. E., & Zipser, D. (1986). Feature discovery by competitive learning. In D. 

E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: 

Explorations in the microstructure of cognition (Vol. 1, pp. 151-193). Cambridge, 

MA: MIT Press. 

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed developmental model of 

word recognition and naming. Psychological Review, 96, 523–568. 

Shanks, D. R., & Gluck, M. A. (1994). Tests of an adaptive network model for the 

identification and categorization of continuous-dimension stimuli. Connection 

Science, 6(1), 59–89. 

Shepard, R. (1987). Towards a universal law of generalization for psychological science. 

Science, 237, 1317–1323. 

Shepard, R. N. (1958). Stimulus and response generalization: Tests of a model relating 

generalization to distance in psychological space. Journal of Experimental 

Psychology, 55, 509–523. 

Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category 

learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

24, 1411–1436. 

Stewart, N., & Brown, G. D. A. (2005). Similarity and dissimilarity as evidence in 

perceptual categorization. Journal of Mathematical Psychology, 49, 403–409. 

Sutherland, N. S., & Mackintosh, N. J. (1971). Mechanisms of animal discrimination 

learning. New York: Academic Press. 



 1013 

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352. 

Vanpaemel, W., & Storms, G. (2008). In search of abstraction: The varying abstraction 

model of categorization. Psychonomic Bulletin and Review, 15(4), 732–749. 

Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis in the 

behavioral sciences. Unpublished Ph.D. dissertation, Harvard University, Boston. 

Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. Paper presented at the 

IRE WESCON Convention. 

Wills, A. J., Lavric, A., Croft, G. S., & Hodgson, T. L. (2007). Predictive learning, 

prediction errors, and attention: Evidence from event-related potentials and eye 

tracking. Journal of Cognitive Neuroscience, 19(5), 843–854. 

Wills, A. J., & McLaren, I. P. L. (1997). Generalization in human category learning: A 

connectionist explanation of differences in gradient after discriminative and non-

discriminative training. Quarterly Journal of Experimental Psychology, 50A(3), 

607–630. 

Wills, A. J., & McLaren, I. P. L. (1998). Perceptual learning and free classification. 

Quarterly Journal of Experimental Psychology, 51B(3), 235–270. 

Wills, A. J., Noury, M., Moberly, N. J., & Newport, M. (2006). Formation of category 

representations. Memory and Cognition, 34(1), 17–27. 

Wills, A. J., Reimers, S., Stewart, N., Suret, M., & McLaren, I. P. L. (2000). Tests of the 

ratio rule in categorization. Quarterly Journal of Experimental Psychology, 

53A(4), 983–1011. 



 1014 

Wills, A. J., Suret, M., & McLaren, I. P. L. (2004). The role of category structure in 

determining the effects of stimulus preexposure on categorization accuracy. 

Quarterly Journal of Experimental Psychology, 57B(1), 79–88. 

Yellott, J. I., Jr. (1977). The relationship between Luce’s choice axiom, Thurstone’s 

theory of comparative judgment, and the double exponential distribution. Journal 

of Mathematical Psychology, 15, 109–144. 

Further Reading 

Kruschke, J. K. (2008). Models of categorization. In: R. Sun (Ed.), The Cambridge 

Handbook of Computational Psychology, pp. 267–301. New York: Cambridge 

University Press. 

Pothos, E.M. & Wills, A.J. (2011). Formal approaches in categorization. Cambridge 

University Press. 

Wills, A. J. (2009). Prediction errors and attention in the presence and absence of 

feedback. Current Directions in Psychological Science, 18(2), 95–100. 

Wills, A.J. & Pothos, E.M. (2012). On the adequacy of current empirical evaluations of 

formal models of categorization. Psychological Bulletin, 138, 102-125. 

 

Figure 23.1 

Components of a model of categorization. 

Figure 23.2 

(A) Representing the similarity structure of stimuli 1, 2, and 3 in a two-dimensional 

geometric space; in this example the dimensions of this space are readily interpretable as 

size and angle. (B) An exponential decay relationship between similarity and distance in 
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psychological space. (C) Euclidean distance (distance2 = x2 + y2). (D) City-block distance 

(distance = x + y). 

Figure 23.3 

(A) Geometric representation of two categories, each of four stimuli (category 

membership denoted by type of dot). (B) Stretching along the x-axis and compression 

along the y-axis, thereby increasing within-category similarity and decreasing between-

category similarity. (C) A category structure for which selective attention to the x-axis 

would be less helpful than in Figure 23.3A. (D) Overall expansion of psychological 

similarity space. 

Figure 23.4 

Geometric representation of two categories, each of eight items; category membership 

denoted by type of circle. C, cluster; P, prototype. 

Figure 23.5 

(A) Geometric representation of two categories, and a linear decision bound separating 

them; category membership denoted by type of circle. (B) A category structure that 

cannot be represented by a single linear or quadratic decision bound. (C) In a decision-

bound account, novel stimuli marked “2” will be responded to at least as accurately as 

novel stimuli marked “1.” 

Figure 23.6 

A simple associative learning model of a disease prediction task. Units representing 

symptoms have connections of variable strength to units representing disease. 

Representational units are shown as circles; associative connections are shown as arrows. 
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The thickness of the arrows denotes the relative strength of the connections in this 

example. 
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