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Abstract

In this paper, we introduce CALM, a process model that is de-
signed to abstract solutions in simple and complex category
learning tasks. The model includes strong assumptions about
the interaction of processes driving learning behavior, typically
addressed in terms of feature attention, stimulus generaliza-
tion, rule abstraction and knowledge partitioning. We present
simulations of CALM, showing that the model can account
both for systematic variations in Type II category difficulty,
and for individual differences in extrapolation of an XOR cat-
egory structure.

Keywords: category learning; process model; associative
learning; abstraction; problem structuring; decision making

Introduction
In their pioneering work on category learning, Shepard, Hov-
land, and Jenkins (1961) provided a paradigm that became
a benchmark for models that implement assumptions on the
processes underlying category learning. In their tasks, partici-
pants learned to categorize stimuli with three binary features,
i.e. colour (black vs. white), shape (square vs. triangle),
and size (small vs. large). They learned six category struc-
tures varying in difficulty (problem Types I-VI, Fig. 1A). The
authors found that the learning curves (speed and accuracy)
systematically differed between the problems, such that I >
II > [III, IV, V] > VI (see also Nosofsky, Gluck, Palmeri,
McKinley, & Glauthier, 1994). These findings, especially the
quick learning in Types I and II, can be predicted by existing
category learning models, e.g. ALCOVE (Kruschke, 1992),
assuming that people generalize from instance memory while
focusing their attention on dimensions that reduce error.

However, the empirical findings regarding the performance
in the Type II problem have been recently revised (Kurtz,
Levering, Stanton, Romero, & Morris, 2013), challenging the
current explanatory accounts. Kurtz et al. show that if the
‘use of rules’ is instructed beforehand, the classic findings
hold. Without rule instructions, however, Type II learning
curves fall together with III, IV, and V, without affecting the
remaining pattern. Importantly, the overall decrease in Type
II performance in the absence of rule instructions is an ag-
gregate effect seemingly summarizing a bimodal distribution

Figure 1: (A) Classic category structures Type I-VI (Shepard,
Hovland, & Jenkins, 1961). Coordinates represent stimuli
with three binary dimensions; black and white circles indi-
cate categories. (B) Coordinate grid of the incomplete XOR
structure as trained in Conaway & Kurtz (2017); ‘A’ and ‘B’
refer to categories of trained stimuli. Shaded cells refer to the
extrapolation area for category ‘B’.

of learning success, i.e. without rule instructions some par-
ticipants perform considerably worse in Type II than e.g. in
Type IV, while other participants perform considerably better
in Type II than in Type IV. Kurtz et al. (2013) discuss that
ALCOVE (Kruschke, 1992) could predict this pattern if sys-
tematic population differences in attention learning were as-
sumed. However, with such an assumption ALCOVE would
also predict that Type I is learned more slowly than it is ob-
served, raising unanswered theoretical questions about atten-
tion learning (see also Matsuka, & Corter, 2008). Kurtz et
al. therefore suggest that these performance differences in
Type II might be driven by other mechanisms, including the
abstraction of ‘rule-like’ representations, as it was initially
suggested by Shepard, Hovland and Jenkins (1961), as well.

Interestingly, the Type II problem could be solved in terms
of a structured problem (see also Kalish, Lewandowsky, &
Kruschke, 2004), i.e. as one-dimensional rule, e.g. “black
objects belong to category B, and white objects to category
A”, that is inverted conditional on the values of a second di-
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mension (context cue), e.g. “invert the prediction for small
objects, but not for large objects”. This we call contextual
modulation.

In a recent study, the Type II task, also called ‘Exclusive
- Or’ problem (XOR), was extended to explicitly test rule
abstraction, or ‘extrapolation’ behaviour (Conaway & Kurtz,
2017). Participants were trained on a two-dimensional ver-
sion of the problem (Fig. 1B). However, some stimuli were
left untrained (empty cells in Fig. 1B). Crucially, the un-
trained stimuli were presented in a subsequent test phase,
where about 31% and 45% of the participants, in Exp. 1
and 2B, respectively, still extrapolated ‘B’ for stimuli in the
lower right quadrant (shaded area in Fig. 1B), while others re-
sponded ‘A’. The response pattern of those participants who
extrapolated ‘B’ corresponds to a complete Type II solution,
which could be described in terms of contextual modulation,
as well.

Despite the evident structural similarity to the classic Type
II problem, XOR extrapolation can not be predicted by ex-
emplar models such as ALCOVE (Kruschke, 1992), or SUS-
TAIN (Love, Medin, & Gureckis, 2004). While the model
DIVA (Kurtz, 2007) has been shown to predict XOR extrapo-
lation to some extent, it seems to be an open question whether
it can account for the behavioural differences in the problem
Types I-VI (see further Kurtz et al., 2013).

Here we assume that differences in contextual modulation
drive the described performance differences in the incomplete
XOR and the Type II problems. In particular, we assume that
there is a learning process that triggers contextual modula-
tion. We call this process ‘contrasting’, i.e. the tendency to
abstract regularities from unobserved instances, which is fur-
ther explained below.

In the following, we introduce CALM, a Category Ab-
straction Learning Model. CALM first learns by associating
dimension values to outcomes in a Hebbian fashion (Hebb,
1949), and generates outcome expectations from these asso-
ciations. To generate these associations, CALM generalizes
from observed, and abstracts from unobserved instances. It
monitors the success of its expectations, and reinforces learn-
ing about predictive (diagnostic) dimensions. It can detect
whether its predictions are systematically violated in specific
contexts and modulates these predictions accordingly.

We first give an overview of the model and its theoreti-
cal motivation, and describe its core equations. The current
version is formalized for learning binary outcomes, for sim-
plicity. We then present simulations, showing how CALM
meaningfully predicts the whole pattern of performance in
the described tasks.

Description of CALM
CALM represents stimuli using a separate set of ordered di-
mension nodes for each stimulus dimension (Fig. 2). Stim-
ulus presentation activates the corresponding node on each
dimension, which feeds forward to its own set of dimension-
specific category nodes. The activation of the category nodes

Figure 2: Schematic of CALM. Solid lines are modifiable-
strength connections, dotted lines are fixed strength. Compo-
nents in red indicate initial activity in CALM as the result of
the presentation of a stimulus.

on a dimension m generates a dimension specific prediction
of category membership (Fig. 2; rm), which is calculated as
the log odds ratio between the strengths of the two node-to-
category associations. They can be positive or negative, pre-
dicting category A or B, respectively.

A dimension-specific prediction (rm) can be modulated by
the active node on another dimension. For example, in Fig.
2, the modulator value for the size dimension (v2) might be
negative for horizontal lines, but positive for vertical lines.
Thus, multiplying r2 and v2 would invert the prediction of
the size dimension for horizontal lines, but not for vertical
lines. Passing the product of r2 and v2 to the decision process,
thus, conveniently simplifies our assumptions about contex-
tual modulation in terms of inversion (keep vs. inverse).
Please note, CALM does not represent ‘explicit rules’, e.g.
decision bounds, but simple associations between the cues of
a dimension and the outcomes.

Stimulus presentation can also activate an instance repre-
sentation (if one has been stored), generating an instance-
based prediction of category membership (Fig. 2; H). We
follow the assumption that people store configural stimulus
representations separately from generalized category repre-
sentations (e.g. RULEX, Nosofsky, Palmeri, & McKinley,
1994). Only one stored instance, most similar to the presented
stimulus, contributes to this prediction by its associations to
the category labels, which determine the magnitude of H.
Thus, CALM differs from exemplar accounts, e.g. GCM
(Nosofsky, 1986), in that it uses nearest neighbour rather than
all-exemplar computations. A decision process sums the cat-
egory prediction terms, H, and rmvm, and converts this sum
into a prediction of category membership using an exponen-
tial ratio rule, for simplicity (Wills, Reimers, Stewart, Suret,
& McLaren, 2000, for a more realistic alternative ).

During learning, CALM interprets feedback, e.g. “It was
category A”, as saying both A is present, and B is absent. Re-
garding the present category, e.g. A, the associative strengths
between the category node A and the basic nodes of a dimen-
sion are increased in a Hebbian fashion (∆wC, Fig. 3). This
additive increase is maximal for the dimension node that was
activated by the stimulus, and decays with the distance from
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Figure 3: Update of associative strengths, exemplified for a
‘size’ dimension with 10 ‘size’ nodes. Red components indi-
cate the active stimulus input node. (A) Update on a dimen-
sion that is more diagnostic (αm = 2/3), and (B) that is less
diagnostic (αm = 1/3) than other dimensions. C indicates ex-
citatory generalization of the links to the present category; C̄
indicates contrasting of the links to the absent category.

this node. This excitatory generalization allows CALM to
respond to (novel) dimension cues that are similar to previ-
ously presented dimension cues, and was inspired by Shep-
ard’s law of generalization (Shepard, 1987). The decay is
modifiable, however, the overall strength of the update de-
pends on the model’s assumption of the diagnosticity of a di-
mension. This means, if the nodes on a dimension already
predict category membership better (more diagnostic) than
the nodes on other dimensions, CALM will update the di-
agnostic dimension more strongly (see Fig. 3A).

Regarding the absent category, e.g. B, the associative
strengths between the category node B and the dimension
nodes are also increased (∆wC̄, Fig. 3). However, the update
is zero for the dimension node that was activated by the stim-
ulus, and increases with the distance from this node. This
process, henceforth called ‘contrasting’, reflects an aware-
ness that specific dimension cues are not observed together
with specific categories. Related ideas can be found in other
models (Stewart & Brown, 2005; Wagner, Brandon, Klein, &
Mowrer, 1989). The contrasting decay is modifiable, and may
vary independently from the decay of generalization. In the
current version of CALM, however, we assume that contrast-
ing is the inverse of excitatory generalization. Importantly,
a steeper contrasting decay in CALM represents stronger ab-
straction, as it generates stronger ‘hypotheses’ about how to
respond to (novel) dimension cues that are dissimilar to the
previously presented dimension cues. As for generalization,
the overall strength of contrasting depends on the diagnostic-
ity of a dimension.

CALM’s assumption of dimensional diagnosticity is not
fixed. CALM continuously estimates the extent to which each
dimension predicts different categories, using the standard
deviation of the dimension’s predictions along its dimension
nodes. The corresponding diagnosticity values (αm) reinforce
or attenuate excitatory generalization and contrasting, which
therefore could be interpreted as focused attention following

associability. The use of αm to indicate diagnosticity is a ref-
erence to the Mackintosh (1975) theory of attentional learn-
ing (see Le Pelley et al., 2016, for a recent review).

The update of the modulator nodes depends on the success
of a dimension in predicting the present outcome. For exam-
ple, in Fig. 2, if the size dimension (r2) predicts category A
when B is correct, then its modulator node (v2) registers this
failure. In this case, the modulator update is negative, other-
wise positive, and recurring negative teaching signals eventu-
ally lead to contextual modulation.

The associative update is maximal for the modulator node
that was activated by the stimulus, and decays with the dis-
tance from this node, following the same decay as for ex-
citatory generalization. Thus, CALM will tend to modulate
a dimension’s prediction in the presence of (novel) context
cues similar to observed context cues. In addition, the update
is weighed by αm which increases learning about the modu-
lators of the most diagnostic dimensions. The update is also
weighed by a similarly calculated diagnosticity value of the
modulator dimension βn. Thus, CALM’s learning depends on
‘focused attention’ on two levels, which has been theorized
previously (Matsuka & Corter, 2008).

One important prerequisite of CALM’s modulation learn-
ing is the maintenance of the modulated dimension associa-
tions, instead of their correction. This requires ‘conditional
error discounting’. Therefore, CALM gradually suspends the
Hebbian update on a dimension when its corresponding ac-
tive modulator becomes increasingly negative.

Error discounting is not a new idea, the current implemen-
tation, however, deviates from previous suggestions, such as
‘annealing’ parameters that reduce learning rates over time,
e.g. RASHNL (Kruschke & Johansen, 1999). Nonethe-
less, an overarching ‘annealing’ process is a side-effect of
CALM’s current architecture, due to the Hebbian learning on
a log scale, i.e. the log odds predictions rm of the dimen-
sions are most volatile with early increments of the associa-
tive strengths, while later increments have less impact.

The final learning process in CALM concerns the creation
of instance representations in memory. On each trial, CALM
strengthens the association between a configural representa-
tion of the presented instance and its category label, with
modifiable learning speed. However, similar but not identi-
cal to the error-based formation of exemplar clusters in SUS-
TAIN, (Love et al., 2004), CALM’s process of storing in-
stances is only effective if the unmodulated dimension predic-
tions predicted the wrong category. Otherwise, the memory
update is very weak, which formally defines strongly mem-
orized instances as exceptions from the generalized category
representations.

Formal Description
The presence of a stimulus S activates the associations wmIk
(initialized to .1) between the corresponding input node I and
the two category nodes k on each dimension m. The vector of
dimension-specific predictions rmIK for category K represents
the log odds ratios between the associative strengths.
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rmIK = ln
(

wmIK

wmIk 6=K

)
(1)

Zero values of rmIK indicate equal associative strengths,
positive values predict category K, and negative values pre-
dict the other category. The absolute magnitudes of rmIK re-
flect the strengths of the dimensions’ predictions.

The presence of the stimulus also activates the modulator
associations v′mnJ (initialized to 0) between the prediction of
dimension m and the active input node J on each remaining
dimension n (with n 6= m). However, only one modulator
value vm contributes to the modulation of dimension m, sat-
isfying two constraints on cognitive complexity. In the first
place, dimension m must be diagnostic, i.e. vm is set to 1,
if αm ≤ 1/M , with M = number of dimensions. Second,
the modulator dimension n must be the most diagnostic, i.e.
vm =v′mnJ , if βn = max(βn6=m). With two or more equally di-
agnostic modulators, the one with the stronger association is
selected. In the case of same strengths, the values are aver-
aged.1 Both diagnosticity monitors αm and βn are initialized
to equal weights, i.e. 1/M.

The presence of the stimulus also activates the nearest con-
figural instance representation Y , which is associated to the
category labels k with strengths hY k (initialized to 0). In-
stance selection is based on the absolute distance dy between
the values σS

mI of the current stimulus and the values σ
y
mi of

the stored instances y.

dy = ∑
m
|σS

mI−σ
y
mi| (2)

For purposes explained below, CALM does not represent
the stimulus values by their physical magnitude. Instead, the
physical values xmi of a dimension m at node i are standard-
ized to σmi, with σmi = (xmi−min(xm))/(max(xm)−min(xm)), scaling
the maximum value on each dimension to 12. The selected
instance Y satisfies dY = min(dy) across all instances. If two
or more instances are equally distant, the instance with the
strongest category association hyk is chosen.

The instance-based prediction HK for category
K is then obtained by subtraction, i.e. HK =(
hY K−hY k 6=k

)
max(abs(vm)), which is positive when

the selected instance predicts K, and negative if it predicts the
other category. The difference is weighed by the maximum
absolute value of the active modulators for scaling, since
rmIK can be amplified by vm (see below), which may vary
between tasks. HK is then passed to an exponential ratio rule,
together with the vectors of the dimension predictions rmIK ,
and their modulation values vm, calculating the probability
p(K|S) of choosing category K given stimulus S.

p(K|S) =
(
1+ e−HK−∑m rmIKvm

)−1
(3)

1Different active modulator associations having the same
strength might arise with correlated dimensions.

2E.g. a binary dimension [white, black] is coded as [0,1], while
equally spaced shadings [white, lightgrey, grey, darkgrey, black] are
coded as [0,.25,.5,.75,1].

When feedback is provided, CALM updates the associa-
tions between the basic nodes and the category nodes on each
dimension via generalization and contrasting (Fig. 3).

Excitatory generalization is applied to the associations be-
tween each node i of dimension m and the category node for
the present outcome C. The update follows a Gaussian decay,
which is maximal at the location I of the stimulus S, and de-
creases in strength with the distance from this node, governed
by the free generalization parameter g.

∆wmiC =
(
1+ e−vm

)−1
αm

[
e−|σ

S
mI−σmi|2/2g2

]
(4)

Contrasting is applied to the associations between each di-
mension node and the category node for the absent outcome
C. The update is identical to excitatory generalization, de-
spite using the inverse of the Gaussian decay. The update for
the active node I is zero, increasing in strength with distance.

∆wmiC =
(
1+ e−vm

)−1
αm

[
1− e−|σ

S
mI−σmi|2/2g2

]
(5)

Both updates are weighed by the diagnosticity αm of
the dimension, and the conditional error discounting term
(1+ e−vm)

−1, which approximates 0 with negative values on
the active dimension modulator vm. I.e. if a dimension is cur-
rently strongly modulated, the updates are suspended, and the
current associations are maintained.

The updates of the modulator associations v′mn j for the j
nodes of each dimension n modulating the predictions of di-
mension m follow the same decay as used for excitatory gen-
eralization. The update is strongest for the active modulator
node J and decays with distance from this node.

∆vmnJ = sign(rmIC)αmβn

[
e−|σ

v
nJ−σn j |2/2g2

]
(6)

The update is weighed by the diagnosticity αm of the mod-
ulated dimension m, and the diagnosticity βn of the modulator
dimension n. The current success of dimension m in predict-
ing the correct category C, i.e. sign(rmIC), determines the
direction of the update, which is -1 if incorrect, and +1 if cor-
rect. The strengths of the modulator nodes are reset to +-5 if
they become stronger, which limits the response amplification
when taking the product in Equation 3.

A memory update further strengthens the association hSC
between the instance representation S and the correct cate-
gory C, where the free parameter λ reflects the learning rate.

∆hSC = λ(1+ e∑m rmIC)−1 (7)

If the correct category C was strongly predicted by the un-
modulated dimension nodes, as indicated by the ratio rule,
the update will be nearly 0, regardless of the learning rate λ,
thus, efficiently storing exceptions only. The unmodulated
predictions are chosen, because we think of modulation itself
not as a representation of category space, but an awareness of
when predictions require ‘adjustment’, which may also result
in configural memory representations.
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The final updates concern the diagnosticity values αm and
βn. Dimension diagnosticity αm is formalized as the extent of
variation in the predictions of a dimension m along its nodes
i, by taking the standard deviations SDm of the corresponding
vector of dimension predictions rmi.

∆αm =
SDm(rmi)

∑m SDm(rmi)
(8)

The estimates of ∆αm are normalized across dimensions,
and then averaged with the previous values of αm. In case of
zero variances, αm is reset to 1/M.

The update of the modulator diagnosticity βn is calculated
similarly, by taking the standard deviations of the associa-
tions v′mn j along the modulator dimension nodes j. However,
only their sign is taken into account for neglecting variations
unrelated to contextual modulation.

∆βn =
∑m 6=n SDn(sign(v′mn j))

∑n ∑m 6=n SDn (sign(v′mn j))
(9)

The standard deviation is taken separately for the associ-
ations between the nodes of a modulator dimension n and
each remaining dimension m (with m 6= n), before they are
summed across the m dimensions, and normalized across the
modulator dimensions. Thus, βn reflects overall modulator
diagnosticity. The update is then averaged with the previous
values of βn. In case of zero variances, βn is reset to 1/M.

In its current version, CALM has 2 free parameters, i.e.
the exception learning rate λ, and the generalization decay g,
which is inversely related to the contrasting decay. Large val-
ues of g indicate strong generalization and weak contrasting,
and vice versa for low values of g. Due to CALM’s standard-
ized dimension values, i.e. a dimension’s maximum is always
1, the impact of g is scaled and g estimates can be directly
compared between tasks that include stimuli with differently
scaled dimensions.

Simulations
In the following, we simulate CALM’s performance for the
six standard category learning tasks, and the incomplete XOR
task (see Fig. 1). To address the initially described differ-
ences in task performance, we assume that rule instructions
increase the tendency to abstract category membership, i.e.
increase contrasting (low g) in CALM. This increases the oc-
currence of prediction errors in specific contexts, which fre-
quently triggers contextual modulation. We consequently as-
sume that the absence of rule instructions leaves contrasting
at a moderate level (high g), such that contextual modulation
is triggered less frequently. Conaway and Kurtz (2017) point
out that they did not instruct the presence of rules in their in-
complete XOR task, hence, we again assume moderate con-
trasting (high g) in this task.

We presented the problem Types I-VI (Fig. 1A) to CALM,
each in 8 blocks of training, as done in Kurtz, et al. (2013).
For simulating the classic pattern, i.e. with rule instruc-
tions, 500 values of g were sampled from a truncated Gaus-

sian distribution with a low mean and a small standard de-
viation, i.e. g ∼ Gaussian(0,3)(.3, .1). For simulating the
revised pattern, i.e. without rule instructions, 500 values
of g were sampled from a distribution with a high mean
and a large standard deviation, i.e. g ∼ Gaussian(0,3)(.7, .5),
which was also done for simulating CALM’s performance in
the incomplete XOR task, where we presented the problem
(Fig. 1B) in 12 training blocks, followed by a test block in-
cluding all possible stimuli, as done in Conaway and Kurtz
(2017). The exception learning rate was always sampled with
λ∼ Gaussian(0,∞)(.15, .05). Figure 4 depicts the results.

Figure 4: CALM simulation results. (A) and (B) depict
CALM’s average learning curves (left) for the six problem
Types I-VI (see Fig. 1A), with strong contrasting in (A), and
weak contrasting in (B). The right columns depict the corre-
sponding distributions of accuracy in the final training block.
(C) and (D) depict the predicted average response gradients
in the incomplete XOR task (test phase) for two sub-groups
of samples. Letters indicate categories of trained items. Re-
sponse probability is indicated by shading; white=100% ‘B’,
black=0% ‘B’. See text for further details.

As can be seen, CALM with strong contrasting (Fig. 4A)
predicts the classic ordinal pattern of learning. CALM with
weak contrasting (Fig. 4B) predicts the revised pattern, in-
cluding a bimodal Type II distribution, without affecting the
remaining pattern, well accounting for the described phenom-
ena, by assuming variations in the strength of contrasting.

The simulation results for the incomplete XOR task can
be seen in Figures 4C and 4D. The two plots represent two
groups of sub-samples, i.e. the 500 samples were split by the
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mean probability of responding ‘B’ in the lower right quad-
rant (shaded area in Fig. 1B) being smaller (4C) or larger than
50% (4D). The depicted sub-groups contain 69% and 31%
of the 500 samples, respectively. As can be seen, CALM
predicts the pattern of performance as described (Conaway
& Kurtz, 2017), by assuming individual variations in the
strength of contrasting.

Discussion
We introduced CALM, a Category Abstraction Learning
Model, combining generalization, abstraction and problem
structuring. CALM successfully accounts for the observed
behavioural pattern in the classic benchmark categorization
problems Type I-VI (Shepard, Hovland, & Jenkins, 1961),
as well as for the systematic influence of rule instructions on
Type II performance (Kurtz et al., 2013). This is achieved
by assuming systematic variations in the tendency to abstract
category representations, described by a contrasting mecha-
nism that generalizes from unobserved instances and triggers
the contextual modulation of dimension-specific predictions.
In addition, we have shown that individual differences in this
process might also explain the observed patterns in the in-
complete Exclusive-Or problem (Conaway & Kurtz, 2017).

The results of our model simulations suggest that contrast-
ing (inverse generalization) might be a key process in cate-
gory learning. Importantly, CALM further implements con-
stant monitoring of the network state, for reinforcing learning
about diagnostic dimensions, for selecting potential modula-
tors, and for maintaining associations of modulated dimen-
sions (conditional error discounting).

We thereby put strong assumptions into the model, which
have yet to be tested. CALM provides various predictions
for sophisticated experimental designs, including variations
in learning order, task switching, or the statistical and struc-
tural properties of categories. In addition, CALM provides
a framework that includes attention parameters on two cog-
nitive levels, which has been theorized before (Matsuka, &
Corter, 2008).

As a next step, we seek to validate the model in further
studies. We believe, that CALM has the promising poten-
tial to provide an alternative approach to human learning be-
haviour in a wide array of tasks.
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