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Abstract 

 

Learning theorists posit two reinforcement learning systems: model-free and model-based. 

Model-based learning incorporates knowledge about structure and contingencies in the world 

to assign candidate actions with an expected value. Model-free learning is ignorant of the 

world’s structure; instead, actions hold a value based on prior reinforcement, with this value 

updated by expectancy violation in the form of a reward prediction error. Because they use 

such different learning mechanisms, it has been previously assumed that model-based and 

model-free learning are computationally dissociated in the brain. However, recent fMRI 

evidence suggests that the brain may compute reward prediction errors to both model-free 

and model-based estimates of value, signalling the possibility that these systems interact. 

Because of its poor temporal resolution, fMRI risks confounding reward prediction errors 

with other feedback-related neural activity. In the present study, EEG was used to show the 

presence of both model-based and model-free reward prediction errors and their place in a 

temporal sequence of events including state prediction errors and action value updates. This 

demonstration of model-based prediction errors questions a long-held assumption that model-

free and model-based learning are dissociated in the brain. 

 

Introduction 

 

Choice behaviour becomes amenable to explanation if it is assumed that value is a construct 

that is internally represented. The construct of value is what unites explanations of decision-

making and reinforcement learning insofar as it is the different values of candidate actions 

that determine what decisions are taken, and the revision of action values in the light of 

feedback that constitutes learning. It is also hoped that value may come to be materially 



defined within the brain, thus uniting behavioural, neural and subjective explanations of 

choice (Glimcher 2009).  

Its attractiveness as a unitary construct notwithstanding, there appear to be multiple 

forms of action valuation. A particularly important distinction lies between goal-directed and 

habitual action. Goal-directed action is led by the value of the outcome it hopes to attain, 

while habit-led action occurs because the mere action itself has acquired value owing to 

previous reward. In terms of associative links, goal-directed and habitual actions arise from 

action–outcome and stimulus–response associations respectively (Dickinson 1985). This has 

wide ramifications. When outcomes are known to be unattainable or have ceased to have 

value (e.g. food for a sated animal), goal-directed decision making can make use of the 

action-outcome link to accordingly down-value the action. This is not possible in habitual 

behaviour because there is no representation of the outcome. Instead, the behaviour is under 

the control of the stimulus and so is selected inappropriately. The consequences of 

inappropriate habitual behaviour can range from the inconvenient (taking the turning to work 

on a Saturday when the goal was a shopping trip) to the grave (perseveration of maladaptive 

cycles of harmful behaviour such as substance abuse). Nevertheless, in a stable environment, 

the habit system is more computationally efficient than the goal-directed system (de Wit and 

Dickinson 2009), and an adaptive agent working under cognitive constraints should incur 

benefits from delegating a large portion of action control to the habit system. 

A dual process theory such as this naturally accommodates wide behavioural 

variation, and so the habit-led / goal-directed distinction, and the representation of outcomes 

or their neglect, provides a powerful overall framework for explaining both inter- and intra-

individual differences in decision making (de Wit, et al. 2012; Eppinger, et al. 2013). Further 

progress requires us to understand the mechanism by which goal-directed and habitual 

systems assign value to actions. Here, computational models of learning can be usefully 



brought to bear insofar as they signpost optimal information processing (to which natural 

selection tends, if not unerringly), express key computational terms for which we may hope 

to find behavioural or neural correlates, and express this information in unequivocal terms 

(Wills, et al. 2017; Wills and Pothos 2012). The properties of goal-directed and habit led 

behaviour strongly suggest they are underlain by two distinct forms of learning, termed 

model-based and model-free (Daw and O' Doherty 2013). Model-based learning maintains 

separate representations of the likelihood with which an action will lead to an outcome, and 

that outcome’s incentive value. The value of an action ultimately rests on the product of these 

two terms, the classic formulation of expected value derived by Pascal (Hald 2003). Because 

of this explicit representation of the contingency x incentive value structure that underlies an 

action value, an agent can prospectively change action values when either the likelihood of 

the outcome or its incentive value is changed. In practice, multiple sub-states are likely to lie 

between an initial reward directed action and its consumption, necessitating the 

representation of an extensive network of transition probabilities. In model-based learning an 

animal thus models the world, albeit strictly in terms of its ability to afford reward. In 

contrast, model-free learning represents neither the likelihood of outcomes nor their incentive 

value, nor indeed anything else. Deprived of the constituent terms required to generate 

expected value, it relies on a different mechanism of action valuation, which is to simply 

maintain a record of how much reward the action has previously incurred, using this 

retrospective valuation as a proxy for expected value. The advantage of such a mechanism is 

that it is computationally cheap. 

Computationally, model-based and model-free learning contain terms that are in some 

cases shared and in other cases unique to themselves. Pre-eminent in model-free learning is 

the reward prediction error (RPE), the difference between expected and obtained reward, 

which is used to adjust action values upwards or downwards (Bush and Mosteller 1955; 



Rescorla and Wagner 1972; Sutton and Barto 1998). RPEs are not used to update action 

values in model-based learning. A quite separate error term is generated, the state prediction 

error (SPE), which reflects the degree to which an outcome, or intermediate state, was 

unexpected, and this error term is used to adjust the network of action-outcome contingencies 

(Glascher, et al. 2010). A term that both model-free and model-based learning share is the 

action value. However, for reasons described earlier, the two systems will often produce 

different values for an action. 

By comparing participants’ behaviour in a reinforcement learning task to a simulation 

of model-based and model-free learning it is possible to assess the evidence for which of the 

two forms of learning are controlling behaviour. Furthermore, by correlating the values of the 

model-free and model-based computational terms described above with neural activity, it 

should also be possible to identify the neural correlates of these two kinds of learning. This 

provides a useful counterpart, drawn from the normal population, to lesion data, which has 

previously been the chief source for inferring the neural instantiation of the two learning 

variants. The computational approach has been used to show model-free RPEs in the striatum 

(O'Doherty, et al. 2004; Seymour, et al. 2012) and an SPE in the dorsolateral prefrontal 

cortex (Glascher et al., 2012). This pattern of results corresponds to lesion work suggesting 

dissociated model-free striatal and model-based prefrontal cortex systems (Killcross and 

Coutureau 2003; Yin, et al. 2004; Yin, et al. 2005). 

Neural correlates also comprise evidence that computational models accurately 

describe the process of choice and learning. In the case where the neural correlate of a 

computational term cannot be found, this may be ascribed to methodological constraints of 

brain imaging. In contrast, where evidence is found for a computational term not predicted by 

the models, this is strong evidence that those models are incomplete. Daw, et al. (2011), for 

example, in a study that forms the basis for the present one, provided fMRI evidence that, on 



arrival of feedback following an action, the brain computes a RPE to both model-free and 

model-based action values. This is despite the fact that model-based learning does not use 

RPEs since these embody a mechanism of incremental adjustment of prior value which 

model-based learning eschews in favour of prospective estimates of value based on what is 

known about the world. Daw et al.’s demonstration suggests that the sharp distinction 

between model-based and model-free learning described by computational models may not 

be so neatly realised in the brain, and that new hybrid models may be needed. One possibility 

is that goal-directed action values are not, as has been supposed, built exclusively from 

prospective evaluation of outcome value and likelihood, but are tempered to some degree by 

a record of previous reward obtained relative to (model-based) expectation. Alternatively, a 

model-based prediction error may serve no function for model-based learning but instead 

may be used as additional input to model-free learning. 

The present study used EEG to assess the evidence for model-based prediction errors, 

acting as a counterpart to Daw et al.’s (2011) fMRI study. The importance of complementary 

EEG and fMRI evidence, given these methods’ respective paucity in spatial and temporal 

resolution is well known. In the present case, the temporal precision of EEG may bring the 

greater gains however. The computational terms by which model-free and model-based 

learning can be distinguished may not be spatially segregated at the resolution attainable by 

fMRI. In contrast, computations associated with the prediction error mechanism, whether it is 

model-based or model-free, must respect a basic ordering, namely action valuation, action, 

outcome receipt, prediction error generation and action valuation update. We thus have a 

prior basis for hoping for temporal discrimination, albeit within the limits imposed by the 

ERP technique, and the further possibility that these steps reflect a cascade rather than 

discrete events. One of the goals of the present study is to use EEG’s temporal resolution to 



demonstrate that model-based prediction error effects are not merely residual effects of 

model-based action values, either prior or subsequent to action. 

This study used the two step task of Daw, et al. (2011) which affords both model-

based and model-free learning strategies. A computational model containing both model-free 

and model-based components was used to model participants’ behaviour, with free 

parameters fitted on a participant-wise basis including a parameter determining the relative 

influence of the two components. The trial by trial values of the computational terms in the 

model were used as regressors in a multiple regression against scalp voltage to establish the 

neural correlates of each term while controlling for the others. Four such terms were 

investigated. We expected to find a model-free RPE, since this component, described 

variously as the “feedback related negativity” (Holroyd and Coles 2002) or “reward 

positivity” (Holroyd, et al. 2008) is routinely observed in model-free learning tasks. We also 

expected to find a neural correlate of SPE insofar as unexpected transitions between states are 

salient events. We also assessed the evidence for neural correlates of action values since these 

are, neuroeconomically speaking, the critical term for decision making inasmuch as they 

predict choice. Finally, we assessed evidence for a model-based RPE: the central purpose of 

this study. 

 

 

Methods 

 

Participants  

 

The study was approved by the ethics committee of the Faculty of Health and Human 

Sciences at the University of Plymouth. Sixty five female students of the University of 



Plymouth participated for course credit and an opportunity to win money. All participants 

were under 29 years, had no history of neurological damage or other significant health 

problems, and were not on medication at the time of the experiment. No other information 

was recorded. Four participants were excluded for excessive artefacts (>75% trials lost). 

Sixteen participants were excluded on the basis of failure to learn or of inadequate task 

attention (see Results section) leaving a final sample of forty five participants. 

 

Task rationale 

 

The task was a variant of Daw et al.’s (2011) two-step task as used by Gillan, et al. (2015). 

The probabilistic structure of the task is shown in Fig 1a. Participants chose from one of two 

fractals at a starting state (state 1) and were taken to one of two possible intermediate states 

(state 2) at which they were shown a single fractal. Each state 1 fractal had both a likely 

(70%) and unlikely (30%) following state 2, with these probabilities explicitly known to the 

participant. Following state 2, the participant was then shown the outcome, either reward or 

no reward. The probabilities with which each state 2 led to reward were initialised at hidden 

values between .25 and .75 and allowed to drift slowly and independently over time within 

those boundaries. Participants could thus use the observed delivery of reward or its omission 

to estimate these hidden probabilities at any given time. It should be stressed that reward was 

contingent entirely on the state 2 reached. Over time, based on outcomes, participants should 

be expected to differentially value the two state 2’s and, insofar as choice at state 1 

determines to some degree the state 2 reached, should also differentially value the two state 1 

choices available. These valuations, both of state 1 choices and state 2’s reached, were 

modelled on a trial by trial basis by a computational model which contained both model-

based and model-free components. The key design feature of the task is that these 



components will come to ascribe different values. The fit of each component’s output to 

behaviour thus indicates the degree to which each is in control. More importantly for the 

present paper, fitting each component’s output to neural data can be used to reveal where and 

when model-based and model-free process occur in the brain. The reason why model-free and 

model-based valuation diverges in this task is best illustrated by considering the case of a 

state 2 which is arrived at via an unlikely (30%) transition and then produces a reward. For 

both model-based and model-free components this raises the value of that state 2. However, 

regarding the state 1 choices, the model-based component will raise the value of the unchosen 

option since its model of the task incorporates the knowledge that this choice is more likely to 

result in transition to the recently rewarded state 2. The model-free component does not 

represent this information and will simply raise the value of the state 1 choice selected since 

it led to reward on that trial. While this is a specific scenario, it is generally the case that the 

neglect or representation of transitions will result in different model-free and model-based 

valuations throughout the task. 

 

 

 



 

Figure 1. a Structure of the two step task  b Sequence of events on one trial 

 

Task implementation and execution 

 

The experimental task was presented using E-Prime software. Fractals were taken from 

http://www.fractalsciencekit.com. Four fractals were used to denote the two choices available 

at state 1 and each of the two state 2’s, with these randomly allocated for each participant. 

Participants were given the requisite knowledge to engage in model-based learning. That is, 

they were shown the state 1 fractal associated with each state 2, informed of the 70% 

transition probability and alerted to the need to track the probability with which each state 2 

led to reward. Participants undertook blocks of sixty trials with a short break between blocks. 



Because trials were self-paced, the number of blocks varied (M = 12.29, SD = 1.67).  Each 

trial followed the format shown in Fig 1b. Participants were presented with a choice of two 

state 1 fractals and chose one via a response box. A blank screen was presented, followed 600 

– 700 ms later by one of the state 2s. Participants then waited 1000 ms until a tone sounded, 

at which time they made a confirmatory key press on the response box to progress the trial. 

Early responses resulted in a penalty and these trials were not used in subsequent analysis. A 

further blank screen was shown, followed 600 – 700 ms later by the trial outcome. At the 

conclusion of a block, participants earned £0.30 if they had achieved thirty one or more 

reward outcomes. To assess task attention, participants were required at the end of each block 

to indicate which of the two state 2s they thought was most likely to lead to reward and which 

of the two state 1 fractals was the better choice.  

 

Computational model 

 

The computational model and associated parameter fitting procedures were implemented in R 

(R Core Team, 2017) using the slpMBMF function of the catlearn package (Catlearn Core 

Team, 2017). The computational model is based on that employed by Gillan, et al. (2015). It 

contains separate model-free and model-based components that work in parallel to derive 

their own estimates of the value of the fractals in the task. Then, to establish for each fractal a 

single overall value to be used for action selection, the model-based and model-free estimates 

are combined into an average that is weighted by the participant’s bias towards model-free or 

model-based learning. This bias, along with further parameters, was estimated from the 

participant’s behaviour. 

 



Model-free component. The model-free component was SARSA(λ) temporal difference 

learning (Sutton and Barto 1998). This algorithm controls learning at state 1 and 2 of the task 

which, collectively, can take three forms, the opening state, denoted sA which is always 

experienced, and two alternative state 2’s, denoted sB and sC, only one of which is 

encountered on a given trial, t. At these states, an action, a is taken and at the trial’s 

conclusion a reward, r is experienced. States and actions at state 1 and 2 are denoted as s1, a1 

and s2, a2  and rewards that follow state 1 and 2 as r1, r2 (with the former always zero in the 

current task). The model-free value QMF for a given state action pair is updated using α, the 

learning rate and δMF, the model-free prediction error as follows 

  

QMF(si,t, ai,t) = QMF(si,t, ai,t) + α.δMF,i,t  

 

where  

 

δMF,i,t = ri,t + QMF(si+1,t, ai+1,t) - QMF(si,t, ai,t)  

 

This is the general form of the algorithm, but in the present task, note that actions are not 

performed at sB and sC (thus the state action values there are more formally described as a 

state values), that, as already noted, rewards are not incurred following s1, so δMF,1,t is given 

entirely by the QMF value of the state 2 transitioned to, and that conversely no state is reached 

after state 2 and so δMF,2 is determined only by the reward r2. At the trial’s conclusion, the 

eligibility parameter λ is used to modulate an additional stage-skipping update of the state 1 

action by the state 2 prediction error 

 

QMF(s1,t, a1,t) = QMF(s1,t, a1,t) + α.λ.δMF,2,t  



 

 

Model-based component. Learning by the model-based component uses fixed knowledge 

regarding how the action taken at state 1 probabilistically determines the state 2 reached and 

combines this with that state 2 value to obtain action values for state 1.  

 

QMB(sA, aj) = P(sB|sA, aj) QMF(sB)  + P(sC|sA, aj) QMF(sC)   

 

Two actions are available at state 1, pressing the left and right keys, denoted here as aA and 

aB. The transition probabilities, which were known to participants, were P(sB|sA, aA) = 0.7; 

P(sC|sA, aB) = 0.7; and P(sB|sA, aB) = 0.3; P(sC|sA, aA) = 0.7 

 

Hybrid action value. For the purposes of action selection only, the state 1 Q values from the 

model-free and model-based components are combined into a hybrid, QH. This is a weighted 

average of the two individual values, QMF and QMB, with the weight given by ω, the degree to 

which the participant’s observed behaviour was model-free or model-based. Thus 

 

QH(sA,aj) = ω.QMB(sA,aj) + (1- ω).QMF(sA,aj) 

 

This hybrid value is for action selection only and plays no role in learning. For learning, 

model-based and model-free components retain their separate Q values, updating these over 

trials as described above.  

 

 

Parameter fitting 



 

The parameters ω, α  and λ were fitted on a participant-wise basis using maximum likelihood 

on observed choices. This necessitated the incorporation of a choice rule. A standard softmax 

rule was used, incorporating the inverse temperature parameter β (also fitted) to derive the 

probability, P, of each state 1 choice 

 

P(ai,t = a|si,t) = exp[β.QH(si,t, a)] / Σa' exp[β.QH(si,t, a)] 

 

Each participant was fitted individually using the L-BFGS-B method (Byrd et al., 

1995) of the optim function in R (R Core Team, 2017). In order to increase the stability of the 

neural regressors, and following Daw, et al. (2011), a second stage of fitting was conducted, 

where all participants were re-fit with all parameters except ω set at their median in the first-

stage fit. Full source code for our fitting procedures will be published at: 

www.willslab.org.uk/ply116 

 

Additional regressors 

 

The analyses to come require two key regressors that do not feature in the computational 

model described above. One is the model-based prediction error δMB, the existence of which 

is not predicted by standard models, but for which we seek evidence. This is derived 

analogously to δMF, though using the difference of the model-based value of a state 1 action 

and the reward encountered at state 2 (always zero in this task) plus the model-free value of 

the state 2 transitioned to (since only model-free values are held at state 2).  

 

δMB,i,t = ri,t + QMF(si+1,t, ai+1,t) - QMB(si,t, ai,t)  

http://www.willslab.org.uk/ply116


 

The second is the SPE, which in model-based learning is used to update transition matrices. 

In keeping with Daw et al. (2011) and other authors using the two stage task, we do not 

attempt to model updating of transition matrices, assuming that the participant represents 

these as remaining fixed at .7/.3 throughout the task. Nevertheless, because unexpected 

transitions should still be expected to generate an SPE, this should be included as a regressor 

to control for its effect on the EEG. With a transition matrix based on two fixed values, SPEs 

can likewise only take two values, so the SPE regressor was entered as a dummy variable of 

zero or one for expected and unexpected transitions. 

 

 

EEG recording  

 

EEG data were collected from 61 Ag/AgCl active electrodes (actiCAP, Brain Products, 

Gilching, Germany) mounted on an elastic cap and arranged in a standard International 10–20 

montage. Electrodes were referenced to the left mastoid and re-referenced off-line to the 

average of left and right mastoid activity. Vertical eye movement was monitored by a right 

suborbital electrode, and horizontal eye movement was monitored using an electrode on the 

right external canthus. Electrode impedances were kept below 20 kΩ. EEGs were amplified 

using a BrainAmp amplifier (Brain Products), continuously sampled at 500 Hz, filtered 

offline with notch filters at 60 Hz (screen refresh) and 50 Hz (AC interference) followed by a 

.1 Hz high pass filter and 30 Hz low pass filter and then down sampled to 125 Hz. Separate 

EEGs were created for activity following presentation of state 2 and outcomes. In each case, 

EEGs were time-locked to 200 ms before the onset of the feedback to 1000 ms afterward, and 

then were baseline-corrected using the interval −200 – 0 ms. Eye movement artefacts were 



removed using a criterion of a voltage change exceeding 75 μv/200 ms in eye electrodes. 

Note that after the presentation of the initial choice (which is not analysed), all stimuli were 

presented in the centre of the screen, at fixation, thus there is no reason to suppose that 

saccades will occur, but more importantly, no means by which a confound of prediction error 

coding with stimulus position induced saccades could occur. Other non-specific artefacts 

were removed using a criterion of any electrode showing either a voltage change exceeding 

40 μv/ms, a voltage value exceeding +/−200 μv relative to baseline, or activity across the 

epoch of below 2.5 μv. The percentage of trials retained was 79.8%. with a minimum of 

63.1% (372 trials) for any one participant. Electrodes which malfunctioned in the course of 

an experiment were substituted using topographic interpolation (Perrin, et al. 1989). 

 

 

Data Analysis 

 

Regression models. Analyses were directed towards establishing evidence for neural 

representation of a model-based RPE, δMB, and so to achieve this, EEG voltage was regressed 

against the computational model’s estimate of this term. Regressions were performed on the 

EEG following arrival of state 2 feedback since there was no possibility of model-based 

learning later in the trial. Regression models were performed on a univariate basis, i.e. an 

independent model calculated for each combination of the 61 electrodes and 150 sample 

points, and individually for each participant. The resulting beta values for regression 

coefficients of interest, foremost of these being δMB, were plotted at representative electrodes 

or as scalp maps (Figures 2, 4 and 5). To assess significance at the group level while 

controlling for the multiple comparisons resulting from mass univariate testing, the cluster 

randomisation procedure of Maris and Oostenveld (2007) was used. One sample t-tests (test 



value = 0, N = 45) were performed on the beta values at each electrode / sample point and 

temporally and spatially contiguous significant points were grouped into a cluster. This was 

assigned a cluster-t value based on the sum of univariate t values and was then assigned a p 

value based on a comparison against a Monte Carlo generated distribution (10,000 iterations) 

of cluster-t values derived from a null distribution. 

Regression models were conducted in the context of a high correlation between δMB 

and δMF (r = .72) and more moderate correlations between δMB and other terms likely to be 

represented in the EEG, the SPE (r = -.31) and the updated model-free Q value of the state 2 

reached (r = .32). The effects of SPE and Q were controlled by including them as additional 

regressors. This was not possible in the case of δMF because of the collinearity arising from its 

strong correlation with δMB. Alternative methods were thus employed to avoid wrongly 

attributing the effects of δMF to δMB. As a preliminary test, we follow Daw, et al. (2011) who 

used a regressor of the form δMB – δMF to describe the extent to which δMB differed from δMF 

on a given trial. By adding this term to a regression model already containing δMF they argued 

it was possible to describe the variance explained by δMB that was not already explained by 

δMF. While this difference term serves a useful means of establishing the existence of δMB, it 

is nevertheless a poor guide to the temporospatial profile of δMB itself rather than where its 

effect on scalp voltage is distinguishable from that of δMF. As Daw et al. note, modelling the 

residual effect of δMB on top of δMF rather than the effect of δMF on top of δMB merely reflects 

the theoretical status quo: that δMF is already assumed to be present. Consequently, the δMB – 

δMF regressor is used only for the preliminary significance test of δMB presence, and 

subsequent characterisation of the δMB time course uses this regressor alone rather than 

embedded in a difference term. 

 



Principal components analysis. Because preliminary analyses suggested the presence of δMB 

and δMF effects with close temporal and spatial overlap, principal components analysis (PCA) 

was used as a means of separating these effects. PCA was performed on δMB and δMF 

waveforms using the ERP PCA Toolkit Version 2.63 (Dien 2010a) using similar procedures 

to those used by Foti, et al. (2011) and Sambrook and Goslin (2016), and following published 

guidelines (Dien 2010b; Dien, et al. 2005; Dien, et al. 2007). Separate PCAs were performed 

on δMB and δMF waveforms. First, a temporal PCA was performed using each sample point as 

a variable and each combination of participant and electrode as observations (2880 

observations). Factors were retained if they explained more variance than a factor extracted 

from a null dataset, i.e. they passed a parallel test (Horn, 1965) and were subjected to Promax 

rotation. All temporal factors that explained more than 1% variance were entered into a 

spatial PCA in which electrodes were used as variables, and each combination of participant 

and temporal factor was used as observations. This produced 810 observations for the model-

based PCA and 855 for the model-free. Factors that passed a second parallel test were 

subjected to Infomax rotation. Following the method of Dien, et al. (2003), factors were then 

reconstructed into waveforms using the product of the factor pattern matrix and the standard 

deviations. These waveforms, shown in Figure 5, could then be interpreted in the same 

manner as the original waveforms, in Figure 4, from which they were extracted. While PCA 

extracts factors based on the variance they explain, without regard to sign, factors that reflect 

bona fide ERP components should show consistent polarity at the group level. To verify this 

consistency, one sample t-tests (test value = 0, N = 45) were performed for each factor, 

scored arbitrarily at its peak amplitude, following Foti et al. (2011). 

 

Rejection of participants. Since we were interested in the neural correlates of reinforcement 

learning, participants were excluded if they did not learn from outcomes. On a participant-



wise basis we tested for the effect of reward (delivered/omitted) and the interaction of this 

term with transition type (likely/unlikely) on behaviour on the subsequent trial (stay/switch) 

following Gillan, et al. (2015). Under this analysis, model-free learning should result in a 

main effect of reward on stay/switch behaviour and model-based learning should result in an 

effect of the reward x transition interaction. Four participants showed no significant effect of 

either term on stay/switch behaviour and were thus excluded from analysis. Participants were 

also excluded if they were unable to identify which fractals were better when probed at the 

end of each block. This check was included because of the relatively slow drift of the state 2 

– outcome contingencies, which meant that participants who selected the more advantageous 

state 1 fractal at the outset and then showed strong perseveration could perform at above 

chance levels without engaging in learning. For each of a participant’s blocks, the observed 

profitability of the state 1 fractals were correlated across blocks with the participant’s stated 

preference of state 1 fractal (left/right) in the end of block probe. An analogous correlation 

was performed for state 2. Participants were rejected (N = 12) unless they were able to 

achieve a significant positive correlation for at least one of the two states. It should be noted 

that rejecting participants on the basis of either their model-based or model-free learning 

cannot introduce circularity into the study since it is not our intention to show that either kind 

of learning is typical. Instead, our research question is: in those cases where model based 

learning occurs, as indexed by behaviour, does it involve computation of a model-based 

RPEs or not?  

 

 

Results 

 

Superiority of the hybrid model. 



It is generally accepted that humans are capable of model-based reinforcement learning, and 

the two stage task has previously been successful in demonstrating this. The present study is 

thus predicated on the assumption that at least some model-based learning will occur and 

addresses the novel question of whether the EEG shows evidence of a model-based RPE. The 

success of this hangs on the accuracy with which model-based action values are estimated 

and these estimates depend on the computational model used. Daw et al. (2011) showed that 

a hybrid model provided a superior behavioural fit compared to a pure model-based model. 

To establish this in the present study, each model’s free parameters were estimated 

individually for each participant using maximum likelihood. Based on a total of 32,335 trials, 

the aggregate raw log likelihood score for the hybrid model was found to be superior to the 

model-based model (-14,884 vs. -18,870). After taking into account the extra free parameter 

of omega by converting each log likelihood to its Bayesian Information Criterion, the hybrid 

model remained superior both in terms of its aggregate level Bayes Factor (BF = 7,676) and 

the proportion of participants for which the Bayes Factor was superior (1.00). The hybrid 

model was also superior to a pure model-free model in terms of aggregate raw log likelihood 

(-15,809), aggregate level Bayes Factor (BF =1,554) and the proportion of participants for 

which the Bayes Factor was superior (.52). Finally, the Bayesian exceedance probability 

(Stephan, et al. 2009), or probability that each model is the most common among the three 

over the population, favoured the hybrid model (hybrid .59, model-based .00, model-free 

.41). 

As a simpler, if cruder, check for model-based learning, we used a mixed effects 

logistic regression (with random slopes and intercepts fitted to participants) to examine 

whether stay/switch behaviour on a given trial was predicted both by the previous trial’s 

reward (model-free learning) and its reward x transition interaction (model-based learning).  

Significance for each fixed effect under consideration was established by comparing the full 



model against a null with the fixed effect omitted. This revealed significant effects of  both 

reward (χ2(1) = 99.96, p <.001) and the reward x transition interaction (χ2(1) = 15.16, p<.001) 

further supporting a hybrid model. 

 

Fitting of behavioural parameters.  

Logistic regression, of the model's predicted response probabilities onto the actual response 

on each trial, produced a significant fit for each participant. We employed Firth’s (1993) bias-

reduced method, via the logistf package (Heinze and Ploner 2016) of R (R Core Team, 2017). 

Medians for the parameter estimates were: omega 0.39; alpha 0.60; lambda; 0.85; beta 5.77. 

Omega, a key parameter for the present study, showed a wide range of values 

(Supplementary Figure 1). As expected, it correlated well with participants’ reward x 

transition coefficient described earlier  (r = .73, N = 45, p <.001), and was also correlated 

with the accuracy with which participants identified the better state 2 (r = .48, N = 45, p 

<.001). There was no evidence that omega reduced over time as a result of the development 

of habitual responding, as confirmed by fitting separate omega values for the first and second 

halves of the experiment and comparing the resulting values (mean ω reduction = .06, paired 

samples t-test: t(44) =1.13,  p = .25) 

 

EEGs 

 

Because discriminating model-based and model-free RPEs is problematic owing to their high 

correlation, and because there was no existing basis for predicting the time or scalp 

distribution of model-based RPEs, we used a flexible approach to analysis incorporating 

confirmatory checks, PCA and behavioural covariates. Correction for multiple comparison 

was implemented in all cases using the Maris and Oostenveld (2007) technique  



 

Outcome locked waveform As a first step, and to establish commonality between the EEG 

response to the two-step task and other reinforcement learning tasks commonly used in the 

field, we examined the outcome locked waveform, where only δMF activity should be 

observable and should be expected to occur in the interval associated with the feedback 

related negativity (FRN), from 240 – 340 ms (Sambrook and Goslin 2015). Figure 2 presents 

the results of the regression V (voltage) = β0 + β1δMF,2 + ε at FCz, confirming strong 

sensitivity to δMF in this interval. Cluster randomisation revealed a single significant cluster 

running from 200 – 440 ms, initially frontocentral, tending to parietal areas later (Monte 

Carlo p < .0001).  

 

Figure 2. Sensitivity of the outcome locked waveform to model-free RPE, taken from the 

regression V = β0 + β1δMF,2 + ε  

 

SPE and Q We next examined effects at state 2. We first assessed the evidence that the SPE 

and the updated value of state 2, QMB,2 were represented in the EEG, as these are potential 



confounds for δMB. The regression V = β0 +  β1δMB,1 + β2SPE + β3QMB,2 + ε was performed. A 

significant cluster of SPE related activity was found extending over parieto-occipital sites 

running from 440 ms to the edge of the measurement window at 1000 ms (Monte Carlo 

p<.0001, see Supplementary Figure 2). A significant cluster of  QMB related activity was 

found in frontocentral sites running from 350 – 620 ms (Monte Carlo p = .0013, see 

Supplementary Figure 3). Additionally, since this regressor is of general interest, we 

examined QMB effects in a later window locked to the confirmatory key press and covering 

the interval -900 – 900 ms, i.e. just before the final outcome. Three clusters of activity were 

found, one corresponding to that described above for the state 2 window, another parieto-

occipital cluster running from -160 – 260 ms (Monte Carlo p < .0001) and a frontocentral 

cluster from 180 – 780 ms occupying much of the period between the confirmatory response 

and outcome (Monte Carlo p < .0001). The two frontocentral clusters showed correlated 

amplitudes across participants at FC4, the site where they were maximal (r = .38, N = 45 p = 

.01) 

 

Evidence for model-based and model-free RPEs Prior to a regression analysis we  

performed a preliminary check for RPE encoding by simply comparing average waveforms 

for positive vs. negative RPEs. This is the standard means of measuring the FRN in one stage 

tasks, however in the present case RPE sign at state 2 is confounded with the SPE inasmuch 

as unexpected transitions tend to lead to an undesired state 2. To control for this we 

performed a 2 x 2 ANOVA using the factors of RPE sign (positive, negative) and SPE 

(expected, unexpected). RPEs were derived from hybrid Q values to give the best single 

indicator of RPE activity. The dependent variable was the participant average voltage at FCz 

in the interval 240 – 340 ms. This revealed a significant main effect of RPE sign (F1,44 = 5.48, 

p = .024, η2= .11), with no other effects significant. Figure 3 shows the waveforms. While 



present, RPE activity was weak compared to the outcome locked waveform. This is expected 

because Q values at state 2 are much less extreme than the outcome values of 0 and 1, so 

tending to produce modest RPEs.  

 

Figure 3. Average waveforms for positive and negative RPEs at state 2 

 

We then progressed to the main purpose of the study, to establish evidence for the  

existence of a δMB effect after accounting for the highly correlated δMF regressor. Following 

Daw et al., (2011) we performed the regression V = β0 +  β1δMF,1 + β2(δMB,1 - δMF,1) + β3SPE + 

β4QMF,2 + ε. The δMB – δMF regressor produced a significant cluster of activity from 310 – 660 

ms at parietal sites (Monte Carlo p = .002) indicating residual effects of δMB once those from 

δMF had been accounted for. As an alternative test for δMB effects, we compared the adjusted 

R2 values of two models: V = β0 +  β1δMF,1 + β2SPE + β3QMF,2  + ε vs. V = β0 +  β1δMF,1 + β2δ-

MB,1 + β3SPE + β4QMF,2 + ε. A significant improvement of adjusted R2 in the second model 

would indicate the presence of a δMB effect; in comparison, if no such effect were present, 

adjusted R2 should be worse as a result of downward adjustment due to a non-explanatory 

second regressor. Note that since individual betas were not inspected, the collinearity arising 



from the presence of both δMF and δMB is of no concern here. In line with the previous 

analysis, this comparison revealed a significant improvement in adjusted R2 values for the 

model containing δMB, running from 360 – 420 ms at centroparietal sites. 

 

Temporospatial character of model-based and model-free RPEs As noted earlier, while the 

residual δMB – δMF is useful for testing for the presence of a δMB effect in the context of a 

correlated δMF regressor, the temporospatial character of the δMB effect is not well expressed 

in this form. Thus having established evidence that δMB effects were present, we reverted to 

the simpler model V = β0 +  β1δMB,1 + β2SPE + β3QMB,2  + ε  to assess the temporospatial 

character of δMB. This revealed a single significant cluster of δMB activity running from 210 – 

350 ms over frontocentral sites (Monte Carlo p =.0003). The complementary model V = β0 +  

β1δMF,1 + β2SPE + β3QMF,2  + ε  revealed a single cluster of δMF activity running from 200 – 

420 ms, initially maximal frontocentrally, progressing to parietal areas later (Monte Carlo p 

<.0001). As can be seen in Figure 4, in the early interval from 200 – 300 ms, voltage is better 

predicted by δMB than δMF activity.  

 

 



 

 

Figure 4. Sensitivity of the state 2 waveform to model-based and model-free RPEs taken 

from the regressions V = β0 +  β1δMB,1 + β2SPE + β3QMB,2 + ε and V = β0 +  β1δMF,1 + β2SPE + 

β3QMF,2  + ε respectively 

In order to better separate δMB and δMF effects, these coefficients were subjected to 

PCA. For the δMB coefficient, eight factors accounted for greater than 1% of the overall 

variance, but of these only one factor (TS4/SF1) was sufficiently consistent in its polarity 

across participants to be significant under a t test (t(44) = 3.13, p = .003). This factor 

extended over frontocentral and parietal sites, peaking at 216 ms. For the δMF coefficient, 

sixteen factors accounted for greater than 1% of the overall variance, but again only one 

(TS4/SF1) achieved significance under a t test (t(44) = 3.02, p = .004). This factor peaked at 

296 ms and was more centroparietal. The factors are shown in Figure 5. While they broadly 

correspond to the most prominent areas of effect of the original coefficients as shown in 

Figure 4, there is a marked degree of temporal separation after PCA, confirming these as 



being distinct components and providing further evidence for an early frontocentral model-

based RPE. 

 

 

Figure 5. Temporospatial factors derived from PCA on δMB and δMF effects shown in Figure 4 

 

An alternative means of separating δMB effects from overlapping δMF effects is to 

correlate participants’ δMB effect with their omega estimate (Daw, et al. 2011). Insofar as δMB 

effects should be stronger when a participant is engaged in model-based learning, this 

correlation should serve to accentuate the δMB signal wherever it lies, and pare away apparent 

δMB effects that in reality reflect δMF activity. We therefore preformed the regression δMB,1 = 

β0 + β1ω + ε. This was necessarily performed across participants rather than for participants 

individually. For Monte Carlo testing, null datasets were achieved by random rearrangement 

of ω values over participants prior to regression. The previously identified early δMB effect at 

210 – 350 ms showed a positive correlation with omega but failed to retain significance after 

correction for multiple comparisons. Instead, a strongly significant cluster of activity was 

found running from 450 – 700 ms at centroparietal sites (Monte Carlo p = .0003). The 

complementary model, δMF,1 = β0+ β1ω  + ε, revealed no significant clusters. These effects are 



shown in Figure 6 at CP4 where the effect of model-based RPE as a function of omega was 

maximal. 

 

Figure 6. Sensitivity of δMB and δMF effects shown in Figure 4 to the behavioural estimate of 

model-based learning, ω 

 

Evidence for computationally separate model-based and model-free RPEs The evidence for 

δMB and δMF effects has so far been taken to imply separate, computationally encapsulated 

systems. However, rather than reflecting specific learning signals of this sort, activity in the 

feedback locked waveform has also been suggested to reflect rather more general expectancy 

violation, such as that related to affect (Gehring and Willoughby 2002; Luu, et al. 2003) or 

conflict (Folstein and Van Petten 2008). Insofar as both model-based and model-free learning 

will have contributed to this expectancy, an EEG response scaled to its violation will show an 

incidental correlation with the δMB and δMF terms of our model even if these actual terms are 

not computed as such by the brain. We tested between these two interpretations. Generalised 

reward expectancy was operationalised by the QH term, since this is a behaviourally derived 

estimate of participants’ overall expected value for the action taken. The violation of overall 



reward expectation can thus be operationalised with the associated RPE, δH. We should be 

careful to note that we do not hypothesise a computational use for δH in reinforcement 

learning, we merely use it here as an index of general reward expectancy violation. We 

compared the adjusted R2 values of two models: V = β0 +  β1δMB,1 +  β2δMF,1 + β3SPE + 

β4QMB,2  + ε  and V = β0 +  β1δH,1 + β2SPE + β3QMB,2 + ε. If the EEG merely reflects deviation 

from generalised reward expectation, then the model containing δH should produce the 

strongest effect size. In contrast, if separate RPEs are generated by model-based and model-

free learning modules, then a model with these entered as individual regressors will be 

superior. Comparison of adjusted R2 values revealed the δH model to be generally inferior to 

the model containing separate δMB and δMF terms, with the effect most pronounced at a 

significant cluster of centroparietal sites from 300 – 440 ms (Monte Carlo p = .0002). 

 

Positive vs. negative RPEs. RPEs in our models are signed terms, and the regressions 

incorporate this property arithmetically without according it any particular relevance, thus 

deriving betas based on a linear relationship of voltage to RPE across this variable’s full 

bivalent range. This may be an inappropriate assumption inasmuch as some studies have 

claimed that instrumental learning tasks produce RPE activity in the EEG that is driven 

selectively by negative  (Bellebaum and Daum 2008; Cohen, et al. 2007) or positive (Foti, et 

al. 2011; Liu, et al. 2014; Sambrook and Goslin 2016) RPEs. The question can be 

investigated by regressing voltage against positive and negative RPEs separately, establishing 

regions of sensitivity, and comparing the sign of the respective betas in these regions. A 

bivalent encoding of RPEs is implied when the models produce same-signed betas, a 

univalent encoding (such as claimed by the authors above) when betas are significant for one 

valence only, and an unsigned prediction error encoding (sometimes described as salience, 

Talmi et al., 2013) when betas are oppositely signed. If valences are not separately modelled 



(as is the case here) the consequence will be that components encoding unsigned prediction 

error will be removed from the EEG through cancelling, univalent components will remain, 

though presenting a shallower beta than when modelled separately by valence (and generally 

showing weaker significance, the increased sample size notwithstanding) and bivalent 

components will be maintained with increased significance. Our objective in the present 

study was to establish if any kind of δMB activity occurred and, without any basis for 

predicting valence-specific sensitivity, we assumed the simplest, bivalent, model. This was 

partly to maintain sample size in the face of effects that were necessarily small when analysis 

was performed on state 2 feedback and partly for robustness of interpretation given that, as 

indicated above, such an analysis always retains all bona fide RPE activity and removes all 

unsigned prediction error activity. However, having demonstrated the presence of model-

based RPE activity, we re-ran models for positive and negatively valenced RPEs separately, 

to provide additional insight into the effects shown in Figures 3 and 5. For both δMF or δMB 

waveforms this decomposition revealed no significant difference between positive and 

negative betas in frontocentral sites from 200 - 420 ms, nor for omega correlations at centro-

parietal sites from 450 – 700 ms. Betas were generally same-signed in these intervals, 

however the reduced power makes it difficult to discriminate between bivalent and univalent 

codings. Waveforms are provided in Supplementary Figures 4 and 5. 

 

 

Discussion 

 

The present study provides evidence for model-based RPEs in the EEG. This was based both 

on the ability of a residual term, δMB – δMF, to account for variance not explained by model-



free RPEs, and also by a comparison of the overall variance explained by a model containing 

model-based and model-free RPEs compared to one containing only model-free RPEs.  

An early model-based RPE, isolated by PCA at 216 ms at frontocentral sites, was 

distinguishable from a model-free RPE signal peaking some 80 ms later. This model-based 

RPE was uncorrelated with omega, the degree to which behaviour was model-based. Such 

dissociations of learning signals and behaviour are not uncommon. Bayer and Glimcher 

(2005) demonstrated that model-free RPEs continued to be faithfully computed even when a 

monkey was pursuing a quite different model-based behavioural policy and, using EEG, 

Chase, et al. (2011) showed that in a reversal learning task, FRN amplitudes reflected model-

free RPEs to old value estimates even when participants’ behaviour indicated that they 

believed values had been reversed. Conversely, Walsh and Anderson (2011) showed that the 

FRN requires exposure to reinforcement in order to develop (a hallmark of model-free 

learning) despite behaviour reflecting the immediate adoption of a model-based policy. In all 

these cases, model-free neural signals are computed despite behaviour being model-based. 

Here we show the reverse: that model-based RPEs are computed even if the participant’s 

behaviour is model-free. It may initially seem paradoxical that an agent should maintain a 

model of the environment on which they do not act. However, this is entirely consistent with 

the contemporary perspective of model-free and model-based learning systems running in 

parallel and competing for access to behaviour (Daw and O' Doherty 2013) and the apparent 

paradox simply arises from the fact that model-free forms of prediction and control are 

largely hidden from explicit subjective view (Huys, et al. in press). 

Both model-based and model-free RPEs were present in the interval from 240 – 340 

ms, the time at which the FRN occurs. The FRN has been claimed to code a model-free RPE 

(Chase, et al. 2011; Walsh and Anderson 2011) and it is likely that this is at least in part true. 

Some studies however, have shown activity associated with the FRN which appears to reflect 



wider knowledge. Reiter, et al. (2016) showed that the FRN appears to incorporate inferences 

about how values of an unchosen key have changed, and Collins and Frank (2016) found 

evidence that latent rule structure influenced the FRN. Given the wide interval in which this 

component is measured, it is likely that the FRN reflects a composite of several neural 

generators (Foti, et al. 2014), with its apparent character (e.g. model-free vs. model-based) 

dependent on when and how it is operationalised. This stresses the value of a fully data-

driven means of extracting effects such as that used here, rather than the use of a pre-defined 

canonical interval selected from a variety of such intervals available in the literature. 

 The common scalp topography of the model-free and model-based effects found here 

is consistent with Daw et al.’s (2011) claim of a common substrate for the two forms of 

learning. Source localisation was not attempted in the present study because the small effect 

sizes associated with state 2 RPEs result in an unstable solution. However we have previously 

localised frontocentral scalp distributions such as those shown by model-based and model-

free RPE here, to the striatum (Sambrook and Goslin 2016), the same common substrate 

found by Daw et al. While the striatum is regarded as key site of model-free learning, other 

studies have also located model-based effects there (FitzGerald, et al. 2010). 

A late, negative-going centroparietal effect of model-based RPE was also found. In 

contrast to the early model-based effect this was heavily correlated with omega: indeed it 

could only be detected once this covariate was included. As such, this effect appears to reflect 

feedback processing in the context of expressed behaviour, rather than the automatic tracking 

and revision of model-based expected value implied by the early component. Such 

behaviour-linked effects have been demonstrated before, for example Chase, et al. (2011) 

showed that negative RPEs which preceded rule-based behavioural reversal were associated 

with greater P3 amplitude than equivalent sized ones which did not. However it is also 

possible that the late effect shown here reflects more generalised processing of valence rather 



than model-based RPE as such, and is larger in participants pursuing a model-based strategy 

simply because they were more invested in the task. The effect’s late latency and sustained 

character are consistent with more deliberative processes. Additionally, the outcome locked 

waveform, where only model-free RPEs are possible, revealed a very similar negative going 

centroparietal effect (Monte Carlo p = .15). 

 The demonstration of model-based RPEs does not resolve the question of 

what function they serve. However, the finding of a model-based RPE at an early latency, 

computed regardless of a participant’s overt behaviour, suggests that model-based RPEs may 

serve a fundamental computational role in reinforcement learning. The early latency, possibly 

up to 80 ms earlier than model-free RPE computation, may seem surprising given that model-

based processes are regarded as computationally costly, but this cost only applies to the 

generation of valuation, not the RPE generated against it, which is equally trivial for both 

model-free and model-based learning. It is this trivial cost that should lead us to the view that 

if model-based RPEs can serve a function then the brain will compute them. The possible co-

location of model-based and model-free RPEs in the striatum is certainly consistent with the 

view that model-based RPEs are used in model-free updates, as has been proposed by Daw, 

et al. (2011). Where the model is good this will generally lead to superior model-free 

performance. Performance will still be worse than a full model-based system, but will still be 

beneficial if model-based valuation is interrupted, for example due to cognitive load. Thus 

the development of computational models describing the interaction of model-free and 

model-based learning are needed to assess their importance in determining behaviour in the 

normal case. The terms from such models can also be combined with neural data to shed light 

on the computational substrate of this interaction. This study, and that of Daw et al.’s, have 

brought converging evidence to bear using fMRI and EEG, but there is also evidence that 



single cells can show behaviour that incorporates information beyond simple model-free 

RPEs (Bromberg-Martin, et al. 2010; Nakahara, et al. 2004). 

 One impetus for using EEG to identify model-based RPEs was that its temporal 

precision allows RPEs to be disentangled from action values, both before and after the RPE 

update. How action values are represented in the EEG is of interest in its own right however. 

Here, using single trial parametric testing on computationally modelled reward prediction 

errors, whilst controlling for confounding components, we were also able to reveal action 

values in the EEG. One cluster of activity occurred frontocentrally directly after the model-

free prediction error. Studies by Tzovara, et al. (2015), Fischer and Ullsperger (2013) and 

Hunt, et al. (2012) (using MEG), employing tasks in which variably valuable choices were 

presented at the start of a trial have also successfully demonstrated neural signatures of Q 

values. Also, in an experiment employing the same two step task as that used here, Eppinger, 

et al. (2017) showed state action Q values at state 2 at a comparable latency (400 ms) to 

ourselves, though more parietally. The speed of onset following state 2 feedback suggests a 

relatively automatic use of RPEs to update model-free action values.  

 In the course of removing its confounding effects, we also showed that unexpected 

transitions resulted in a large sustained positive parietal potential from 400 – 800 ms. Activity 

in this time and location is sometimes referred to as the Slow Wave or Late Positive 

Complex. Surprising, or otherwise salient outcomes, have previously been associated with 

this component. Spencer, et al. (2001) showed such a response to oddball stimuli and 

Sambrook and Goslin (2014, 2016) observed such a response scaled to the absolute size of 

RPEs regardless of whether these were manipulated by outcome likelihood or magnitude. 

Eppinger et al 2017, using the same two step task also found a positive going parietal 

component associated with SPEs, maximal at 800 ms. Precisely what aspects of salience this 

component reflects is yet to be resolved however. In the context of reinforcement learning, 



the term salience has been used to refer to a number of different properties including 

infrequency (Schultz 2013), z-score (Schultz 2009), unsigned prediction error (Sambrook and 

Goslin 2014; Sambrook and Goslin 2016; Talmi, et al. 2013), mere presence or absence of a 

stimulus (Esber and Haselgrove 2011) or, in the present case, SPE, and distinguishing 

between these will require careful experimental design. However, Glascher, et al. (2010), 

using the current two-step task but with fMRI, showed activation that was better attributed to 

a SPE than an unsigned prediction error, with this effect present in areas associated with the 

P3, a component that is widely regarded as reflecting model updating (Donchin and Coles 

1988). Cavanagh (2015), using a three armed bandit task, and a computational model 

incorporating SPE, Q and δMF terms, much like ours, also showed the P3 reflected 

behavioural adjustment associated with an SPE, with this dissociated from δMF activity shown 

in the time course of the FRN.  The effect reported in the present study overlaps with the 

time-course of the P3 and it is very possible that a SPE is being recorded in both Glascher et 

al.’s and our study. However this question will be best addressed by explicitly modelling 

SPEs in a more dynamic learning task where participants must monitor contingency changes. 

This contrasts with the present case where participants were instructed to regard 

contingencies as fixed. 

To conclude, this study identifies neural correlates of the computational building 

blocks of reinforcement learning. It shows the usefulness of multiple regression of single trial 

EEG data for separating out computational terms that are correlated in typical reinforcement 

learning experiments. The demonstration of a model-based RPE using EEG, in concert with 

previous evidence drawn from fMRI, suggests that the current paradigm of fully dissociated 

model-free and model-based systems may not be realistic. This might entail a modification of 

current concepts of model-based valuation to incorporate a model-based RPE, or may instead 

require a revision of model-free learning such that it receives input from the model-based 



system via an RPE. These new computational models can then be submitted for empirical 

verification. In the wider context, elucidating the mechanisms of model-free and model-based 

learning is central to understanding how harmful habits are formed and maintained. A strong 

model-based learning system can serve as  a protective factor against psychiatric conditions 

of habit such as drug addiction, eating and anxiety disorders (Hasler 2012). The field of 

computational psychiatry (Maia and Frank 2011; Montague, et al. 2012; Redish 2004) seeks 

to use computational terms from models of normative decision making as biomarkers of 

mental disorders in the case where those terms have outlying values. Thus Paulus, et al. 

(2004) showed that, when expressed as computational terms, both behaviour and fMRI 

activations elicited from a simple two-choice gambling task could be used to predict relapse 

in a cohort of treatment-seeking methamphetamine addicts. Using the current two-step task 

but with a devaluation manipulation at the task’s conclusion, Gillan, et al. (2015) showed that 

the behavioural term omega predicted individual-wise devaluation sensitivity. Model-based 

learning thus appears to be key to resisting habit formation, and measuring its strength may 

predict important real world adaptive behaviour such as sensitivity to reward devaluation or 

contingency changes. The availability of neural in addition to behavioural predictors can only 

help in this regard, not least since the two may be dissociated as in the case of the early 

model-based RPE shown here. It might also be argued that the predictive value of neural 

biomarkers for real world behaviour will be more reliable than that of behavioural assays 

insofar as performance on any particular experimental task may generate heavily task led 

behaviour peculiar to that circumstance. In contrast, the strength of the response of the neural 

apparatus activated may more robustly predict that apparatus’ involvement in the wider 

context of the real world. 
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