Beyond Goodness Of Fit

An Introduction to Parameter Space Partitioning

Andy J. Wills, University of Plymouth, UK.

Beyond Goodness Of Fit

An Introduction to Parameter Space Partitioning

Lenard Dome, University of Plymouth, UK.

What is a formal model?

A formal model unambiguously specifies transformations from independent variables to dependent variables.

Key reading: Wills & Pothos (2012)

Example of a formal model

A+ AB+ B CD+ D

B < D

Blocking (e.g. Kamin, 1969)

 $\Delta w = G(\lambda - \Sigma w)$

Delta rule (e.g. Rescorla & Wagner , 1972)

Advantages and problems of formal models

- Appreciation of problem difficulty
- Reduction of ambiguity
- Hard, and time consuming, to design, implement, and test
 - Help is at hand!

https://www.andywills.info/catlearn/

Is my model any good / better than your model?

A+ AB+ B D CD+ B: 0.5 D: 0.75 $\Delta w = G(\lambda - \Sigma w)$ Vary *G* to minimize difference:

Data Model

B .50 .55

D .75 .80

RMSD = 0.07 ...or r², AIC, BIC,...

Problems with goodness of fit

- What wouldn't it have fit?
- Ordinal patterns
 - Experimental replication typically ordinal
 - 3 possible outcomes in blocking, 1 observed.
 - Does model also produce the 2 non-observed patterns?

Key reading: Roberts & Pashler (2000)

A+ AB+ B CD+ D

 $B < D \checkmark$ B > D ?B = D ?

PSP: Implementation

- Generalizes to *N* parameters.
- Grid search is slow and likely to miss things, particularly as N rises.
- Computationally intensive:
 - Efficient model code
 - Efficient PSP code
 - Multi-core compatible

lenarddome.github.io/software/psp/

PSP: Implementation

- Pick a point
 - Run model
 - Discretize pattern
 - Look at close-by points
 - Repeat
- New pattern?
 - New, parallel, search from that point.

Computationally intensive

Accommodation and prediction

- Accommodation: Pattern observed in both human and model.
- **Prediction:** Pattern observed in model but not (yet) in human.

Dome & Wills (in prep.)

Accommodation and prediction

• Accommodation: Pattern observed in both human and model.

• **Prediction:** Pattern observed in model but not (yet) in human.

$$\beta = \frac{|M \cap H^{'}|}{|H^{'}|}$$

 $M \cap H$

Η

 $\alpha =$

Formal models of the IBRE

	α	β
Ideal model*	1	0
EXIT		
Full	.09	.17
CAG	.03	.03
RAS	.05	.08
DGCM		
(2007)	.38	.92
(2018)	.12	.12
Known weak model **	.01	0

* Under conditions of complete information

** Gluck & Bower (1988), does not capture group-level IBRE effect.

Dome & Wills (in prep.)

g-distance

<u>Summary</u>

- Formal models are great!
- A good fit is not persuasive
- Parameter space partitioning provides an alternative
- Assess models by:
 - Accommodation
 - Prediction
 - g-distance

Thanks for listening!