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This paper examines the effect that prior exposure to perceptual stimuli has on the 

prevalence of overall similarity (family resemblance) categorization. Experiment 1 

demonstrated that participants who had previously encountered stimuli produced 

more overall similarity sorting when asked to free classify them than participants who

were pre-exposed to different stimuli to those they later classified. Experiments 2a 

and 2b showed that this effect is modulated by the perceptual difficulty of the stimuli 

- pre-exposure statistically increased overall similarity sorting for perceptually easy 

stimuli but not for perceptually difficult stimuli. Overall similarity sorting was also 

significantly higher for perceptually easy stimuli than for perceptually difficult 

stimuli. Experiment 2b additionally showed that pre-exposure increased the 

discriminability of the perceptually easy stimuli but this effect was not statistically 

detectable for perceptually difficult stimuli. Experiment 3 established that the pre-

exposure effect is also influenced by the spatial separateness of the stimulus 

dimensions - pre-exposure significantly elevated overall similarity sorting when the 

dimensions were integrated into a coherent object but not when they were spatially 

separated. Similarly, there was a statistically significant increase in the perceptual 

discriminability of the spatially integrated stimuli after pre-exposure but not for the 

spatially separate stimuli. Taken together, these results demonstrate that pre-exposure 

can elevate overall similarity sorting and provide insight into the conditions under 

which the effect will occur.

Key words: overall similarity; free classification; perceptual learning; pre-exposure; 

categorization.
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The ability to group items into meaningful categories is a fundamental 

cognitive process that helps us make sense of the world we live in. For example, it 

allows us to make inferences about objects that we have never seen before and to treat

different objects in the same way, greatly simplifying the complex environment that 

we live in. However, due to the vast number of different items we encounter outside 

the lab, this process must inevitably be highly constrained. A key question, then, is 

how do we acquire the categories that we have? 

Categorization has traditionally been examined using supervised learning 

procedures where participants are required to learn experimenter-defined categories 

and are provided with trial-by-trial feedback on their responses (e.g., Medin & 

Schaffer, 1978; Shepard, Hovland, & Jenkins, 1961). While this approach has 

undoubtedly provided great insight, there is a growing acknowledgement that it is 

important also to examine other conditions in which we acquire categories (e.g., Love,

2002). In unsupervised categorization – also known as free classification (e.g., 

Imai & Garner, 1965), free sorting (e.g., Bersted, Brown, & Evans, 

1969), category construction (e.g., Medin, Wattenmaker, & 

Hampson, 1987), and spontaneous categorization (e.g., Pothos & 

Close, 2008) - participants are given a set of stimuli and asked to 

sort them in the way that seems most sensible and natural to them 

with no feedback provided on their responses. This approach is ideal

for providing insight into the way people naturally choose to create 

categories.

One reasonable assumption is that people would have a 

preference to create categories that are consistent with the way 

items are organized outside the laboratory. The “classical” view 
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proposes that categories are organized around necessary and jointly

sufficient defining features (e.g., Bruner, Goodnow, & Austin, 1956) 

– as long as an item possesses the particular defining feature (or 

features) it is a member of that category regardless of the 

properties of the remaining features. However, this theory has 

become less influential due to the difficulty of finding defining 

features for many natural categories. Instead, many natural 

categories appear to possess a family resemblance or overall 

similarity structure (e.g., Rosch & Mervis, 1975; Rosch, Mervis, Gray,

Johnson, & Boyes-Braem, 1976) where categories are organized 

around a number of characteristic but not defining features. If an 

item has enough features characteristic of a category, it can be 

considered a member of that category even if it does not have a 

particular feature. One advantage of overall similarity categories is 

that they are typically believed to be a more information-rich structure than 

unidimensional categories and have been considered especially useful for 

identification, inference, problem-solving, and other cognitive tasks (Murphy, 2002). 

For example, Hoffman and Murphy (2006) note that classifying an object as a robin 

allows one to infer perhaps as many as 100 properties that are characteristic of the 

category “robin”.

Surprisingly, however, initial work indicated that when 

participants are asked to group items without any feedback they 

have a strong tendency to create categories based on a single 

dimension and rarely sort by overall similarity (e.g., Ahn & Medin, 

1992; Ashby, Queller, & Berretty, 1999; Imai & Garner, 1965; Medin 
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et al., 1987). This approach appears more consistent with the 

classical view than with a family resemblance theory. More recent 

work has revealed a more nuanced picture with manipulations of 

stimulus presentation method (Regehr & Brooks, 1995), the spatial integration of 

stimulus dimensions (Milton & Wills, 2004; Milton & Wills, 2009), the category 

structure (Pothos & Close, 2008), instructions (Wills, Milton,  Longmore, Hester, & 

Robinson, 2013), and background knowledge (Spalding & Murphy, 1996) all 

influencing the prevalence of overall similarity categorization. Nevertheless, even in 

these studies overall similarity sorting is typically far from ubiquitous. An important 

question, therefore, is to understand why the categories we prefer to create do not 

reflect the commonly assumed underlying structure of natural world categories.

One notable aspect of many of the studies cited above is that participants had 

little or no exposure to the stimuli prior to classifying a very limited number of items 

(e.g., Ahn & Medin, 1992; Medin et al., 1987; Milton & Wills, 2004). This appears 

atypical of categorization outside the lab where we usually have had a great deal of 

exposure to the objects we categorize. One possibility, therefore, is that this lack of 

familiarity with the stimuli is contributing to the dearth of overall similarity 

categorization in these studies. Instead, limited experience with the stimuli may pre-

dispose participants to fall back on a simplistic, unidimensional, strategy as they have 

not had sufficient experience with the stimuli to identify the overall similarity 

structure that organizes them. One prediction, then, is that if participants receive 

substantial pre-exposure to the stimuli prior to classification this may increase the 

probability that they will group them by overall similarity (see Milton & Wills, 2004, 

for an earlier discussion of this prediction). 
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While there is an extensive body of work looking at the influence of pre-

exposure on the ability to differentiate perceptual stimuli, the vast majority of this 

work has used response accuracy to measure its effect (e.g., McLaren, 1997).  This 

work typically demonstrates that prior experience has a beneficial effect on accuracy 

(e.g., McLaren, Leevers, & Mackintosh, 1994). A related, but to date surprisingly 

neglected, question is the extent to which pre-exposure can actually change the nature

of the categories that we create. One of the few published studies to look at this was 

by Wills and McLaren (1998) who used a free classification procedure to show that 

pre-exposure can influence the number of categories people use. While intriguing, 

that work, which used complex checkerboard stimuli, provides no insight into the 

current question of whether pre-exposure can modulate the level of overall similarity 

categorization. 

More directly related to this question is Experiment 3 of Spalding and 

Murphy’s (1996) paper that examined the influence of background knowledge on 

overall similarity sorting. In this particular experiment, participants were provided 

with verbal labels giving details about the features of an instance relating to domains 

such as vehicles (e.g., Made in Africa/Made in Norway; Lightly insulated/Heavily 

insulated; Green/White; Drives in jungles/Drives on glaciers) which were either 

organized so that there was a meaningful theme (i.e., vehicles suitable for driving in 

Africa or Scandinavia) or were arranged so that there was no coherent theme. 

Spalding and Murphy found that when there was a coherent integrated theme 

connecting the dimensions, participants who previewed the stimuli prior to 

categorization produced a greater level of overall similarity categorization than those 

who had no preview. This difference was not present, though, when there was no 

coherent theme connecting the dimensions – no overall similarity sorting was 
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observed in either condition. Spalding and Murphy argued that the preview provided 

participants with a greater opportunity to detect the coherent theme and the inter-

correlation of features which would then facilitate overall similarity categorization.

On the other hand, Milton and Wills (2004), using stimuli with perceptual 

dimensions rather than verbal labels, compared the prevalence of overall similarity 

categorization for participants who were pre-exposed to the stimuli via a matching-

pairs task and those who were not. In the matching-pairs task, participants were 

provided with two copies of each of the ten stimuli in the set and were asked to put 

them into identical pairs. This ensured that they could identify all of the stimulus 

dimensions that varied and gave them some initial exposure to the stimuli prior to 

categorization. However, this manipulation had no effect on the level of overall 

similarity sorting. This may reflect that the limited amount of time that participants 

were exposed to the perceptual stimuli (around 2-3 minutes on average) was not 

sufficient to change the nature of their classifications.

By what mechanism might pre-exposure be expected to elevate overall 

similarity categorization for a set of perceptual stimuli? One of the most extensively 

documented effects of pre-exposure is that it leads to perceptual learning which can 

be defined as the enhanced ability to discriminate between stimuli as a consequence 

of experience with them or related stimuli (e.g., McLaren, Graham, & Wills, 2010). 

There are numerous theories of perceptual learning (e.g., Goldstone, 1998; Hall, 1991;

Lavis & Mitchell, 2006; McLaren, Kaye, & Mackintosh, 1989; Mundy, Honey, & 

Dwyer, 2007; Seitz & Watanabe, 2005). For example, the MKM model (McLaren, 

Kaye, & Mackintosh, 1989; see also McLaren & Mackintosh, 2002; Livesey, & 

McLaren, 2011) assumes that stimuli are represented by a number of elements. Items 

that share many common elements will be more difficult to discriminate than items 
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that share few elements. One of the key assumptions of this model is that when 

elements co-occur, there will be a reduction in the salience of these elements (often 

referred to as latent inhibition). Consequently, one of the principal effects of pre-

exposure is that elements which frequently co-occur reduce in salience more quickly 

than elements that rarely co-occur. This means that the unique elements that 

discriminate one stimulus from another will tend to be higher in salience than the 

common elements that both stimuli share (because the common elements will have 

been presented more often and because they are good predictors of one another). This 

preferential processing of the unique elements, which discriminate between items, 

compared to the common elements, which do not, is what, according to the MKM 

model, leads to the increased differentiation of stimuli after pre-exposure.

An increased ability to differentiate stimuli might be expected to encourage 

overall similarity sorting as it would enable people to not only facilitate the 

processing of the different feature-values of those dimensions (within-dimension 

differentiation) but also to detect more easily the dimensions of variation between the 

stimuli (between-dimension differentiation). It could also make the inter-correlation 

of features and the overall similarity structure more salient in a manner analogous to 

that which Spalding and Murphy (1996; see also Lassaline & Murphy, 1996) 

proposed occurs when there is a meaningful theme underlying the category structure. 

The four experiments presented in this paper provide the first detailed investigation of

this hypothesis. If our assumption is correct then it would provide a valuable 

illustration of the way that pre-exposure can actually change the nature of the 

decisions made. 

Experiment 1
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Method

Participants and Apparatus. Fifty students from the University of Exeter 

were recruited to take part in this experiment either for course credits or £5. For this 

and subsequent experiments, all participants were aged 18-35 and there was a strong 

female bias. Participants were tested inside individual cubicles within a multi-testing 

lab (with up to eight participants being run simultaneously) and the experiment was 

run using E-prime on a Dell PC with a 17-in. monitor and a standard 

computer keyboard. No participant took part in more than one experiment in this

paper. Ethical approval for this and all subsequent studies was obtained from the 

University of Exeter School of Psychology Ethics Committee.

Stimuli. The two stimulus sets employed had the same abstract stimulus 

structure to that used by Medin et al. (1987). This structure is shown in Table 1. 

Stimuli possessed four binary-valued dimensions (D1-D4) and the stimuli were 

organized around two prototypes, each representative of one of the categories. These 

prototypes were constructed by taking all the positive values on the dimensions for 

one of the stimuli (1, 1, 1, 1) and all of the zero values on the dimensions (0, 0, 0, 0) 

for the other category. The rest of the stimuli were mild distortions of the two 

prototypes in that they had three features characteristic of their category and one 

atypical feature more characteristic of the other category. In total, there were 10 

stimuli in each set. Sorting the stimuli by overall similarity, as shown in Table 1, 

maximizes within-group similarities and minimizes between-group similarities.

The category prototypes for the two stimulus sets are shown in Figure 1. One 

stimulus set were artificial lamps first used by Milton & Wills (2004; see also Milton, 

Wills, & Hodgson, 2009). The four dimensions were the number of dots in the 

lampshade (few/many), the width of the stem (thin/thick), the color of the top part of 
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the base (light blue/dark blue) and the length of the bottom part of the base 

(narrow/wide). The boat stimuli were first used by Milton, Longmore, and Wills, 

(2008) and were inspired by Lamberts (1998). The dimensions were the shape of the 

flag (square/triangle), the size of the sail (small/large), the shape of the porthole 

(circle/diamond) and the length of the hull (wide/narrow).

Design. Participants were randomly allocated to one of the two between-

subject conditions. In the same-stimuli exposure condition, participants were pre-

exposed to the same stimuli that they later classified. For example, they were pre-

exposed to and then classified the boat stimuli. In the unrelated-stimuli exposure 

condition participants were pre-exposed to different stimuli to those they later 

classified (e.g., they were pre-exposed to the lamp stimuli and subsequently classified 

the boat stimuli). The stimulus set that participants classified was randomized. In 

total, there were 24 participants in the same-stimuli condition (12 classified the boat 

stimuli, 12 classified the lamp stimuli) and 26 participants in the unrelated-stimuli 

condition (15 classified boats, 11 classified lamps).

Procedure.

The running-recognition phase. In both the same-stimuli and unrelated-

stimuli conditions, participants were pre-exposed to the appropriate set of stimuli via 

a running-recognition task (e.g., Wills & McLaren, 1998). We chose a running-

recognition task as it should encourage participants to actively process the stimuli and

attending to all the stimulus dimensions would be needed to perform optimally on the 

task (we consider the impact that different methods of pre-exposure may have had on 

our results in the General Discussion). The instructions for this task are displayed in 

the Appendix. Each of the ten stimuli in the set was presented twice in each block in a

random order. Each trial began with a black fixation cross presented in the middle of 



11

the screen lasting 500ms. This was immediately followed by one of the stimuli from 

the set appearing in the middle of the screen for 3000ms. Participants could not 

respond during this time. After this, the stimulus then immediately disappeared and 

participants were asked to press "x" if they had seen that stimulus before in that 

particular block and "m" if they had not. This response was self-paced. Following 

this, the next trial immediately began. At the end of each block, participants were 

informed of their accuracy in that block. In total, participants in both conditions 

completed sixteen blocks of 20 trials. 

       Categorization phase. The categorization procedure was identical for the 

same-stimuli and unrelated-stimuli conditions and immediately followed the 

running-recognition pre-exposure phase. We used a computer-based variation of 

Regehr and Brooks’s (1995) match-to-standards procedure that was the same as that

adopted in Milton et al. (2009). Participants were asked to classify a set of stimuli 

into two categories (participants were not told prior to this point that they would be 

completing a categorization task). They were informed that there were many ways 

in which the stimuli could be split and that there was no correct answer. Participants

were asked to classify the stimuli in the manner they thought most appropriate. The 

full instructions are provided in the Appendix.

 At the beginning of each trial a black fixation cross was presented for 500ms 

in the center of the screen. The two category prototypes were then presented at the 

top of the screen and below these prototypes in the center of the screen one of the ten 

stimuli in the set (E1-E10 in Table 1) was displayed. Participants categorized this 

stimulus either into category A by pressing “x” on the keyboard or into category B by

pressing “m”. This decision was self-paced and the stimulus immediately disappeared

when a response had been made. No feedback was provided on the responses and 
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instead a blank screen was then presented for 1000ms before the next trial began. 

Each of the stimuli in the set appeared once in each block in a random order. At the 

end of each block, participants were asked to write down as precisely as possible in a 

booklet provided how they categorized the stimuli in the previous block. Participants 

then began the next block when they were ready (in other words, there was no extra 

pre-exposure of the stimuli in between each of the categorization test blocks). In total,

there were six blocks. The inclusion of multiple blocks provided the opportunity to 

build up a reliable index of an individual’s sorting behavior rather than relying on a 

limited number of responses from a single block. Previous work indicates a close 

correspondence between multiple block procedures and single block procedures 

(Milton et al., 2008).

Analysis of results. In all experiments in this paper, each participant was 

classified as having produced one of the sort types described below. These sort types 

are similar to those employed by Regehr and Brooks (1995) and are identical to those 

used by Milton and Wills (2004) and subsequent studies from our lab (e.g., Milton et 

al., 2008; Wills et al., 2013). To be classified as sorting by either overall similarity or 

unidimensionally, both the participant’s description of their strategy and their 

behavioral response were required to be consistent with each other. As in previous 

work (e.g., Wills et al., 2013), each block was categorized independently.

An overall similarity sort, also commonly known as a “family resemblance” 

sort, has the same structure as shown in Table 1. In this type of strategy, the 

participant has to place each of the prototypes, along with their derived one-aways, 

into separate categories without error.  Additionally, they have to describe their 

strategy as being based either on general similarity or by placing each item into the 

category with which it had more features in common. Participants were classified as 



13

producing a one-away overall similarity sort if they grouped items in the same way as

for an overall similarity sort but there was a single error in their classification.

A unidimensional sort is based on a single dimension of the stimulus. It does 

not matter which of the dimensions is used as the basis of sorting, so long as all of the

positive values for the chosen dimension are placed in one category and all of the 

zero values for that dimension are in the other category.  Additionally, to be classified

as a unidimensional sort, the participant has to describe their sort as being based on a 

single dimension. In a one-away unidimensional sort, participants described their 

decision as being driven by a single dimension but there was a solitary error in their 

classification. 

Any classifications other than those described above were classified as other 

sorts, even if the description given by the participant fitted one of the sorts described 

above. 

Results and Discussion

The raw data for this experiment are publicly available at: https://osf.io/qxtw9/

     Running-recognition phase. Recognition accuracy was measured using d’ 

with 0 indicating chance performance. The mean accuracy across blocks is shown in 

Figure 2a (note that the same-stimuli and unrelated-stimuli conditions are identical in 

the running-recognition phase so we collapsed across this factor here and for similar 

analyses in subsequent experiments).  Recognition accuracy significantly improved 

across training, F(15,735) = 2.04, p = .011, η2
p = .04. 

Categorization phase. For every block, each participant’s sorting strategy 

was classified according to the sort types described above.  One-away unidimensional
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and one-away overall similarity sorts were classified as unidimensional and overall 

similarity sorts respectively (cf., Milton & Wills, 2004; Milton et al., 2008).

The mean proportion of overall similarity, unidimensional and other 

categorizations produced in the same-stimuli and unrelated-stimuli conditions are 

shown in Figure 2b. There was no statistical difference in categorization behavior 

between the lamp and boat stimuli for any of the analyses so we therefore collapsed 

across these two stimulus sets in the subsequent analyses (this is also the case in all 

subsequent experiments). The proportion of overall similarity categorization was .39 

greater in the same-stimuli condition than the unrelated-stimuli condition, t(48) = 

4.15, p<.001, d = 1.16. 

Unidimensional categorization was .15 less in the same-stimuli condition than 

the unrelated-stimuli condition but this difference was not statistically significant, 

t(48) = 1.31, p = .197, d = 0.37. The proportion of unidimensional sorts in which 

participants used their most commonly selected dimension was .82 (same-stimuli 

= .84; unrelated-stimuli = .80, t(28) = .42, p =  .68)1. 

Other sorts were .24 greater in the unrelated-stimuli condition than the same-

stimuli condition, t(48) = 2.35, p = .023, d = 0.67. Using the self-reports, Other sorts 

were further classified to examine what strategies participants were attempting. These 

were divided into three categories: failed overall similarity (.36), failed 

unidimensional sorts (.22) and other idiosyncratic strategies (.42). Using this 

information, together with the sorts that had previously been classified as either 

overall similarity or unidimensional, we calculated the mean proportion of self-reports

that were consistent with each participants’ most commonly reported strategy. 

Overall, participants self-reported using the same strategy on .83 of sorts.2 
1 For subsequent experiments we report only the mean proportion collapsed across all conditions, but further

information at the condition level is provided in Section A of the Supplemental Materials.
2 Please see Section B of the Supplemental Materials for descriptive statistics displaying the breakdown across

conditions for these measures for this and subsequent experiments.
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The results of Experiment 1 provide the first demonstration that prior exposure

to a set of perceptual stimuli leads to a greater level of overall similarity sorting than 

exposure to a different set of stimuli to those subsequently categorized. Participants 

who had not been pre-exposed to the stimuli produced a greater level of Other sorts 

suggesting that they struggled to apply a coherent strategy consistently without having

any previous experience with them. This, of course, is a single demonstration of a 

novel finding and in Experiment 2 we attempt to generalize the effect to different 

stimulus sets containing a greater number of dimensions and to explore in more depth 

the conditions under which pre-exposure influences the nature of the categories we 

create.

Experiment 2a

Our explanation for the results of Experiment 1 is that same-stimuli pre-

exposure increased the discriminability of the stimuli and that this made an overall 

similarity response easier to perform than in the unrelated-stimuli condition. Previous 

work has shown that perceptual learning is most pronounced when the stimuli are 

perceptually difficult to discriminate (e.g., Oswalt, 1972) and that pre-exposure can 

even slow learning if the stimuli are sufficiently different (e.g., Chamizo & 

Mackintosh, 1989). 

The MKM model (e.g., McLaren et al., 1989) proposes that stimuli are made 

up of a combination of common elements and unique elements which differentiate the

stimuli. In the case, for example, of the ladybird prototype stimuli in Figure 3 (top 

left), common elements would include the dots that both stimuli share. However, the 

ladybird stimulus on the left has more dots than the one on the right while the one on 

the right has a larger red colored surface. These differences would constitute unique 
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elements. According to MKM pre-exposure should draw attention to the aspects of 

the stimuli that differ. MKM posits that, for perceptually similar items, there are many

common elements which will lead to a greater benefit accruing from pre-exposure 

compared to perceptually different items where there are few common elements. In 

Experiment 1, the stimuli in each category are relatively similar to each other (e.g., 

both categories are boats which share a very similar configuration) which is likely to 

have encouraged perceptual learning to some extent. Nevertheless, it is clearly 

possible to further increase the similarity between the stimulus sets – for example, the 

lamp stimuli used in Experiment 1 were the easier to perceptually discriminate of two 

stimulus sets, sharing the same basic dimensions, employed in Experiment 5 of 

Milton and Wills (2004). We therefore adopted a similar approach to Milton and 

Wills by creating a set of perceptually easy stimuli, that were comparable in 

perceptual difficulty to the stimuli used in Experiment 1 (where there were, for 

example in the ladybird stimuli, relatively few shared dots) and a perceptually 

difficult set of stimuli where the differences between the feature values were harder to

discriminate because there were more common elements (e.g., there were more shared

dots).  

We had two main aims with this experiment. First, we wished to generalize 

the effect we obtained in Experiment 1 with perceptually easy stimuli to new stimulus

sets which possessed a different number of dimensions (five rather than four). This 

change should increase the within-category similarities and increase the inter-

correlation of features which could potentially increase the size of the effect. Second, 

we wished to examine whether we could also obtain the pre-exposure effect with 

perceptually difficult stimuli and whether it may even be enhanced (on the basis that 
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perceptual learning has been argued to be greater for perceptually difficult 

discriminations, Oswalt, 1972).

Method

Participants and Apparatus. Students from the University of Exeter 

participated either for course credits or for a payment of £5. There were sixty-four 

participants (16 in each of four between-subject conditions) who were tested 

individually in a quiet testing cubicle. We tested participants using E-prime, 

on a Dell PC with a 17-in. monitor and a standard computer 

keyboard. 

Stimuli. The four stimulus sets in this experiment had the 

same basic structure to that used in Experiment 1 with the 

exception that there were now five, rather than four, binary-valued 

dimensions (see Table 2). Similar to in Experiment 1, each category 

was organized around a prototype which possessed all five 

characteristic features of that category. The remaining stimuli were 

mild distortions of the two prototypes in that they had four features characteristic of 

their category and one atypical feature more characteristic of the other category. In 

total, there were 12 stimuli in each set. 

Two of the stimulus sets were based on ladybirds and the other two stimulus 

sets were based on houses (see Figure 3). The two pairs of stimulus sets were 

identical except that for one of the sets the binary values for each dimension were 

relatively easy to distinguish (e.g., for the ladybird stimuli the difference in the leg 

size was relatively large) and for the other set the differences were relatively difficult 

to distinguish (e.g., the difference in the leg size was relatively small). We term these 
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sets the perceptually easy and the perceptually difficult stimuli respectively. The five 

dimensions for the ladybird stimuli were: antennae (length and width between them), 

the size of the head, the number of dots on the body, the length of the green ovals on 

the body, and the size of the legs. The five dimensions for the house stimuli were the 

height of the aerial, the length of the chimney, the number of lines on the roof, the 

size of the windows, and the size of the door. 

Design. The experiment had a 2 x 2 between-subjects factorial design. The first

factor was the perceptual difficulty of the stimuli (two levels: perceptually 

easy/perceptually difficult). The second factor was the type of pre-exposure, which 

also had two levels (same-stimuli/unrelated-stimuli). This led to four conditions: 

perceptually easy/same-stimuli exposure, perceptually difficult/same-stimuli 

exposure, perceptually easy/unrelated-stimuli exposure and perceptually 

difficult/unrelated-stimuli exposure. In all conditions, the stimulus set (either 

ladybirds or houses) that participants classified was counterbalanced.

Procedure. The basic procedure for both the pre-exposure and categorization 

phases was identical to in Experiment 1. However, because there were now 12 stimuli

in the sets rather than 10, there were 16 blocks of 24 stimuli in the running-

recognition task, and 6 blocks of 12 stimuli in the categorization task.  

Results

The raw data for this experiment are publicly available at: https://osf.io/rgpx6

Running-recognition phase. Mean d’ accuracy across conditions is shown in 

Supplemental Figure 1. Similar to in Experiment 1, accuracy in the running-

recognition task improved significantly across blocks, F(15,930) = 3.27, p < .001, η2
p 

= .05. Mean d’ was 0.31 greater in the perceptually easy condition than the 

perceptually difficult condition, F(1, 62) = 7.68, p = .007, η2
p = .11, but there was no 
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statistically significant interaction between perceptual difficulty and block, F (15, 

930) = 0.52, p = .933 η2
p = .01.  

Categorization phase. The mean proportion of overall similarity, 

unidimensional, and other categorizations produced in the four conditions are shown 

in Figure 4. The proportion of overall similarity sorting was .39 higher in the 

perceptually easy condition than the perceptually difficult condition, F(1,60) = 36.07, 

p <.001, η2
p =.38. There was also .13 greater overall similarity sorting in the same-

stimuli condition than the unrelated-stimuli condition, F(1,60) = 4.22, p = .044, η2
p 

= .07, and a significant interaction between perceptual difficulty and pre-exposure 

type F (1, 60) = 6.40, p = .014, η2
p = .10. Pairwise comparisons, though, revealed that 

the direction of the interaction was the opposite to that predicted – for the perceptually

easy stimuli, same-stimuli exposure resulted in .29 higher overall similarity 

categorization than unrelated-stimuli exposure, t(30) = 2.33, p = .027, d = 0.82, but 

there was no statistical difference between exposure type for the perceptually difficult 

stimuli, t(30) = -1.38, p = .178, d = 0.49 (mean proportion difference = .03). 

The mean proportion of unidimensional sorts was .26 greater for the 

perceptually difficult stimuli than the perceptually easy stimuli, F(1,60) = 8.58, p 

= .005, η2
p = .13. The .11 difference between the exposure conditions was not 

statistically significant, F(1,60) =1.58, p = .214, η2
p= .03, but there was a significant 

interaction between level of perceptual difficulty and exposure type, F(1,60) = 4.38, p 

= .041, η2
p = .07. Pairwise comparisons revealed that for the perceptually easy stimuli,

unidimensional sorting was .29 lower in the same-stimuli exposure condition than in 

the unrelated-stimuli exposure condition, t(30) = 2.22, p = .034, d = 0.78. In contrast, 

the .07 greater unidimensional sorting in the same-stimuli condition compared to the 

unrelated-stimuli condition was not statistically significant, t(30) = -0.644, p = .528, d
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= 0.22. As in Experiment 1, participants who produced unidimensional sorts tended to

stick with the same dimension (mean proportion = .86).

The .14 greater Other categorizations in the perceptually difficult condition 

compared to the perceptually easy condition was not statistically significant, F(1,60) =

2.87, p = .096, η2
p= .05, and neither was the .02 difference between the pre-exposure 

conditions, F(1,60) = 0.14, p = .71, η2
p <.01. There was also no statistically significant 

interaction between exposure type and perceptual difficulty, F(1,60) = 0.51, p = .822, 

η2
p = .001. Other sorts were a mixture of failed overall similarity (.17), failed 

unidimensional (.59), and other idiosyncratic (.24) strategies. Overall, participants 

self-reported using the same strategy on .90 of sorts.

Discussion

The results for the perceptually easy stimuli replicate and extend the results of 

Experiment 1 to different sets of stimuli with a larger number of dimensions - overall 

similarity categorization was significantly enhanced when participants were pre-

exposed to the stimuli prior to sorting them compared to when they were exposed to a 

different set of stimuli. In contrast, we did not find any statistically significant effect 

of pre-exposure for the perceptually difficult stimuli indicating that the influence of 

pre-exposure does not occur for all types of stimuli. 

One explanation for our failure to detect an effect of pre-exposure for the 

perceptually difficult stimuli lies in the finding that there was a significant main effect

of perceptual difficulty, with the perceptually easy stimuli evoking more overall 

similarity sorting than the perceptually difficult stimuli (where overall similarity 

sorting was close to floor). This result is noteworthy in its own right as a first 

demonstration of a further factor that modulates the prevalence of overall similarity 

sorting. It is also in line with our general tenet that overall similarity sorting is more 
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prevalent when the stimuli are easier to differentiate (which can be achieved either via

pre-exposure or due to the perceptual characteristics of the stimuli themselves) as this 

makes such a strategy easier to perform. For the perceptually easy stimuli, pre-

exposure further increases the already noticeable differences between the stimuli 

leading to an additional elevation of overall similarity sorting. For the perceptually 

difficult stimuli, however, the stimuli are so similar to each other that discriminating 

the differences across multiple dimensions is an extremely effortful and time 

consuming process even after pre-exposure which leads participants to categorize 

based on a subset of the information (e.g., the dimension whose feature values they 

find easiest to discriminate). This consequently leads to a paucity of overall similarity 

sorting and a high level of unidimensional classifications. 

Experiment 2b

While our explanation for the pattern of findings observed in Experiment 2a 

appears to have some plausibility, our results were nevertheless different to what we 

predicted. In Experiment 2b, we therefore aimed to replicate the results of Experiment

2a using different stimulus sets. In addition, we made the assumption both in 

Experiment 1 and for the perceptually easy stimuli in Experiment 2a that the increase 

in overall similarity sorting was driven by an elevation in the perceptual 

discriminability of the stimuli as a result of the relevant pre-exposure. While this 

supposition appears reasonable given the extensive documentation of perceptual 

learning effects after pre-exposure (cf., Goldstone, 1998; McLaren & Mackintosh, 

2000; Suret & McLaren, 2003), Experiments 1 and 2a provide no direct evidence for 

this effect. We therefore included a perceptual discrimination task after the 

classification phase in Experiment 2b to directly test this assumption and, in 
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particular, to compare the relative impact of pre-exposure on differentiating the 

perceptually easy and the perceptually difficult stimuli. 

Method

Participants, Apparatus, and Design. Eighty-three participants took part for 

either course credits or £5. Three further participants were excluded for failing to 

complete the experiment. Participants were tested inside individual cubicles within a 

multi-testing lab (with up to seven participants run simultaneously). As before, the 

experiment was run using Eprime on a Dell PC with a 17-inch monitor and a standard 

computer keyboard. Participants were randomly allocated to one of the four between-

subjects conditions: perceptually easy/same-stimuli exposure (21 participants), 

perceptually difficult /same-stimuli exposure (21 participants), perceptually 

easy/unrelated-stimuli exposure (21 participants) and perceptually difficult/unrelated-

stimuli exposure (20 participants). In all conditions, the stimulus set (butterflies or 

lamps) that participants classified was approximately counterbalanced.

Stimuli. The four stimulus sets had the same abstract structure as in 

Experiment 2a. Two of the stimulus sets were modifications of the lamp

stimuli used in Experiment 1 and the other two stimulus sets were 

modifications of the butterfly stimuli previously employed in 

Experiment 4 of Milton and Wills (2004). Four of the dimensions of 

the lamp stimuli were the same as the stimuli used in Experiment 1;

the fifth dimension was the size of the triangle on the top of the 

lampshade. For the butterfly stimuli, the dimensions were: the size 

of the antennae (long/short), the size of the head (big/small), the 

number of lines in the top set of wings (many/few), the color of the 
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bottom set of wings (light grey/dark grey) and the length of the tail 

(long/short). The category prototypes are displayed in Figure 5.

Procedure. The basic procedure of the running-recognition and free 

classification phases was identical to in Experiment 2a. However, following the 

categorization phase, participants completed a perceptual discrimination test. Each 

trial began with a blank screen for 250ms before a black fixation cross appeared in the

middle of the screen for 250ms. Immediately after this, two stimuli were presented in 

the center of the screen, with one being directly above the other. Participants were 

required to say whether the stimuli were identical (by pressing "x") or different (by 

pressing "m"). The task was self-paced and the stimuli remained on the screen until 

participants made their response. Feedback (“Correct” in blue and “Incorrect” in red) 

was then provided for 750ms. The next trial then immediately began. The stimulus 

pairs were presented in a random order in a single block of forty-eight trials.

Participants viewed stimuli of the same level of perceptual difficulty as they 

had encountered previously in the experiment. Twenty-four of these trials displayed a 

pair of the lamp stimuli and the remaining twenty-four trials presented a pair of the 

butterfly stimuli. Participants had been pre-exposed to one of these sets during the 

running-recognition exposure phase (pre-exposed) while they had not seen the other 

stimulus set during the running-recognition task (not pre-exposed). Within each of 

these sets twelve of the stimulus pairs were from one of the categories and the other 

twelve pairs contained stimuli from the other category. For each category, six of these

pairs comprised identical stimuli (e.g., both stimuli were E1; see Table 2) and for the 

other six pairs the stimuli were different (e.g., one stimulus was E1 and the other was 

a different stimulus, such as E6, from the same overall similarity category). Pairs that 

were different varied on one or at most two dimensions. In total, for 24 of the trials 
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the correct answer was “identical” and for the other 24 trials the correct answer was 

“different”. Instructions for this phase are shown in the Appendix.

Results

The raw data for this experiment are publicly available at: https://osf.io/t79sr/

Running-recognition phase. Mean accuracy across conditions is displayed in 

Supplemental Figure 2. Accuracy again significantly improved across blocks, F (15, 

1215) = 7.89, p < .001, η2
p = .09, and mean d’ accuracy was 0.30 better in the 

perceptually easy condition than the perceptually difficult condition, F(1,81) = 14.45, 

p< .001, η2
p = .15. There was no significant interaction between block and perceptual 

difficulty, F (15,1215) = 0.78, p = .698, η2
p = .01.

Categorization phase. The mean proportion of overall similarity, 

unidimensional, and other sorts for each condition are displayed in Figure 6. The 

proportion of overall similarity sorting was .14 higher in the same-stimuli condition 

than the unrelated-stimuli condition, F(1,79) = 4.86, p = .030, η2
p = .06, and .51 

greater for the perceptually easy stimuli than the perceptually difficult stimuli, F(1,79)

= 61.15, p <.001, η2
p = .44, with overall similarity sorting again close to floor for 

perceptually difficult stimuli. There was also a significant interaction between 

exposure type and perceptual difficulty, F(1,79) = 4.83, p = .031, η2
p= .06. For the 

perceptually easy stimuli, the proportion of overall similarity sorts was .29 higher in 

the same-stimuli condition than the unrelated stimuli condition, t(40) = 2.24, p = .031,

d = 0.69. For the perceptually difficult stimuli the proportion of overall similarity 

sorts was almost identical (a .001 difference), t(39) = 0.04, p = .973, d = 0.01. 

The proportion of unidimensional sorting was .55 higher in the perceptually 

difficult condition than the perceptually easy condition, F(1,79) = 63.03, p <.001, η2
p=

.44. There was no statistical effect of pre-exposure, F(1,79) = 1.16, p = .286, η2
p = .01,
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with a mean difference of .07 between the same-stimuli and unrelated-stimuli 

conditions. However, there was a significant interaction between exposure and 

perceptual difficulty, F(1,79) = 4.18, p = .044, η2
p = .05. Investigating this interaction 

further, unidimensional sorting was .22 lower for the perceptually easy stimuli in the 

same-stimuli condition than the unrelated-stimuli condition although this effect did 

not reach statistical significance, t(40) = 1.89, p = .067, d = 0.58. In contrast, for the 

perceptually difficult stimuli unidimensional sorting was .07 higher in the same-

stimuli condition than the unrelated-stimuli condition, although this result was again 

not statistically significant, t(39) = -0.88, p = .385, d = 0.28. The proportion of 

unidimensional sorts where participants used their most commonly selected 

dimension was .80.

For Other sorting, there was no statistical effect of perceptual difficulty, 

F(1,79) = 0.46, p = .498, η2
p = .01 (difference = .03), or exposure type, F(1,79) = 1.58,

p = .212, η2
p = .02 (difference = .07), and no statistically significant interaction 

between exposure type and perceptual difficulty, F(1,79) < 0.01, p = .968, η2
p <.001. 

According to the self-reports, other sorts were a mixture of failed overall similarity 

(.33), failed unidimensional (.30), and other idiosyncratic (.36) strategies. Overall, the 

self-reports indicated that participants attempted the same strategy on .90 of sorts.

Perceptual discrimination test. As for the running-recognition task, we used 

d’ as our measure of accuracy for the perceptual discrimination task. The mean 

accuracy for the same-stimuli and unrelated-stimuli conditions is shown in Figure 7a. 

We conducted a mixed-design three-way ANOVA with the between-subjects factors 

being level of perceptual difficulty (perceptually easy/perceptually difficult), 

categorization set (same-stimuli/unrelated-stimuli) and the within-subjects factor 

being whether the stimulus set had been pre-exposed via running-recognition or if it 
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had not3. Mean d’ was 0.95 greater in the perceptually easy condition than the 

perceptually difficult condition, F(1,79) = 27.00, p <.001, η2
p =  .26, while accuracy 

was also 0.39 higher in the same-stimuli condition than the unrelated-stimuli 

condition, F (1,79) = 4.53, p = .036, η2
p = .05. The 0.07 greater accuracy for the 

stimuli pre-exposed in running-recognition compared to those not pre-exposed was 

not statistically significant, F(1,79) =0.56, p = .457, η2
p < .01. However, the 

interaction between the same-stimuli/unrelated-stimuli factor and the pre-exposure 

factor was significant, F(1,79) = 5.79, p = .018, η2
p = .07.  The remaining interactions 

were not statistically significant. 

We then analyzed the data for the same-stimuli and unrelated-stimuli 

conditions separately to better characterize the nature of the significant interaction we 

observed. For the same-stimuli condition, accuracy was 0.29 greater when stimuli had

been pre-exposed during the running-recognition task than when they had not been, 

and this effect was marginally significant, F(1,40) = 3.94, p = .054, η2
p =  .09. Mean d’

was 1.04 greater in the perceptually easy condition than the perceptually difficult 

condition, F(1,40) = 15.34, p <.001, η2
p = .28.There was no significant interaction 

between running-recognition exposure and perceptual difficulty, F(1,40) = 2.96, p 

= .093, η2
p =  .07. We then ran a priori follow-up comparisons for the perceptually 

easy and perceptually difficult conditions separately as a key reason for including the 

perceptual discrimination task was to test whether pre-exposure had a differential 

effect on these groups. For the perceptually easy stimuli, the beneficial effect of pre-

exposure was 0.53, t(20) = 3.09, p = .006, d = 0.68, while for the perceptually difficult

3 We also divided the task into two halves (24 trials in each half) and ran a four-way ANOVA including this
additional factor to assess whether there was an impact of learning on the task. This indicated that d’ was .24
higher in the second half of the task than the first  half,  F (1,  79) = 9.33,  p = .003,  η2

p  = .11.  There was no
statistically significant interaction between session half and any of the other factors, with the exception of a four-
way interaction, F(1,79) = 7.01, p = .01, η2

p  = .08, between session half, pre-exposure in running recognition,
categorization set (same-stimuli/unrelated-stimuli), and perceptual difficulty, 
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stimuli the .03 advantage of relevant pre-exposure was not statistically significant, t 

(20) = 0.17, p = .871, d = 0.03. 

For the unrelated-stimuli condition, d’ accuracy for the perceptually easy 

stimuli was 0.84 greater than for the perceptually difficult stimuli, F(1,39) = 11.74, p 

< .001, η2
p =  .23. The stimuli not exposed during running-recognition had 0.15 higher

accuracy than the stimuli pre-exposed during running-recognition but this effect was 

not statistically significant, F(1,39) = 1.90, p = .176, η2
p = .05. There was also no 

statistically significant interaction between pre-exposure in running-recognition and 

perceptual difficulty, F(1,39) = 0.15, p = .698, η2
p < .01 -  there was no statistical 

difference between the stimuli pre-exposed during running-recognition and stimuli 

not pre-exposed for either the perceptually easy stimuli, t(20) = -1.27, p = .218, d = 

0.28 (d’ difference = 0.19), or the perceptually difficult stimuli, t(19) = -0.69, p 

= .501, d = 0.13 (d’ difference = 0.11).  This difference in the pattern of results 

between the same-stimuli and unrelated-stimuli conditions may reflect the fact that in 

the unrelated-stimuli conditions, participants had previously seen both sets of stimuli 

(one during running-recognition and the other via categorization) prior to the 

discrimination test. Contrastingly, in the same-stimuli condition, participants had only

viewed one set of stimuli, but in this case over both the running-recognition and 

categorization phases. As a consequence, the difference in exposure was maximal for 

the same-stimuli condition, but minimal for the unrelated-stimuli condition. This 

variation in pre-exposure is one plausible explanation for the significant interaction 

between categorization set (same-stimuli/unrelated-stimuli) and running-recognition.

As secondary analyses, we examined reaction time (RT) in the same manner 

as we did for accuracy (see Figure 7b for the descriptive data). In an initial 3-way 
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ANOVA4, the perceptually easy stimuli were responded to 2158ms quicker than the 

perceptually difficult stimuli, F(1,79) = 24.77, p < .001, η2
p = .24, while RT was 

214ms quicker for stimuli that had been pre-exposed during running-recognition than 

stimuli that had not been and this effect was marginally significant, F (1,79) = 3.72, p 

= .057, η2
p =  .05. Participants in the same-stimuli condition responded 458ms slower 

than participants in the unrelated-stimuli condition but this difference was not 

statistically significant, F(1,79) = 1.11, p = .295, η2
p = .01. As for the accuracy 

analysis, there was a significant interaction between running-recognition exposure 

type and categorization set (same-stimuli/unrelated-stimuli), F (1,79) = 6.66, p = .012,

η2
p = .08, although none of the other interactions were statistically significant. 

For the same-stimuli condition, perceptually easy stimuli were responded to 

2424ms faster than perceptually difficult stimuli, F (1,40) = 12.75, p <.001, η2
p = .24. 

RT was also 498ms faster for stimuli that had been pre-exposed compared to non-pre-

exposed stimuli, F (1,40) = 7.06, p = .011, η2
p = .15. There was no statistically 

significant interaction between pre-exposure type and perceptual difficulty, F (1,40) =

0.31, p = .578, η2
p < .01.

For the unrelated-stimuli condition, RT was 1893ms quicker for the 

perceptually easy stimuli than the perceptually difficult stimuli, F (1,39) = 12.48, p 

= .001, η2
p = .24. However, there was no statistical difference between exposure 

conditions, F(1,39) = 0.40, p = .533, η2
p = .01 (difference = 72ms) and no statistically 

significant interaction, F(1,39) = 2.60, p = .115, η2
p = .06.

Discussion

The classification results of Experiment 2b replicated the main findings of 

Experiment 2a. Specifically, there was a significant interaction, with same-stimuli 
4 As for the accuracy analyses, we also considered the effect of session half together with the other factors in a

four-way ANOVA. Participants were 964ms slower in the first half of the task than the second half, F (1,79) =
33.47, p < .001, η2

p  = .30. There were no statistically significant interactions between session half and any of the
other factors.
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exposure significantly increasing the prevalence of overall similarity sorting relative 

to unrelated pre-exposure for the perceptually easy stimuli but there was no such 

statistical effect for the perceptually difficult stimuli. We also again observed greater 

overall similarity sorting for the perceptually easy stimuli than the perceptually 

difficult stimuli. Furthermore, in the same-stimuli (but not the unrelated-stimuli) 

conditions we observed a broadly similar pattern in the perceptual discrimination task.

Participants who viewed the perceptually easy stimuli responded more quickly and 

accurately on the stimuli they had viewed during the running-recognition task than the

stimuli they had not previously seen but this effect did not emerge for the perceptually

difficult stimuli although this interaction did not reach statistical significance. 

In summary, Experiment 2b again showed that there was a significant effect of

pre-exposure for perceptually easy stimuli but no significant effect for perceptually 

difficult stimuli. In addition, it suggests that the increased ability to differentiate the 

perceptually easy stimuli following pre-exposure may be driving the corresponding 

elevation in overall similarity sorting for these stimuli. For the perceptually difficult 

stimuli, there was no detectable perceptual learning and also no elevation in overall 

similarity sorting. This is perhaps because, even after pre-exposure, the differences 

between the dimensions were sufficiently small to prohibit easy multi-dimensional 

processing of the stimuli and instead encouraged participants to selectively attend to 

the dimension they found easiest to differentiate.

Experiment 3

Experiment 3 takes a different angle from Experiments 2a and 2b by 

examining how the pre-exposure effect is affected by manipulating the level of spatial

integration of the stimulus dimensions. Previous work has indicated that stimuli with 
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spatially separate dimensions evoke a greater proportion of overall similarity sorting 

than stimuli where the dimensions are spatially integrated into a coherent object (e.g., 

Milton & Wills, 2004, 2009). Milton and Wills (2004) argued that spatially separating

out the dimensions made it easier to extract the relevant dimensions and to 

differentiate the stimuli which would, consequently, make it easier for participants to 

apply a multidimensional, overall similarity rule. We propose that pre-exposure could 

work in a similar way to this by making it easier for participants to extract the 

different stimulus dimensions. This assumption is supported by Goldstone and 

Steyvers (2001) who created stimuli with arbitrary dimensions by blending 

photographs of faces in different proportions. Over time, participants learned to 

identify the relevant dimensions and use this information to increase their 

categorization accuracy. 

If one of the things pre-exposure does is to help identify and process the 

individual dimensions (all of which in the current experiments are equally relevant), 

then one would predict that it would have more of an impact for stimuli whose 

dimensions are spatially integrated where the dimensions are difficult to extract than 

for spatially separate stimuli where this should be relatively straightforward to do 

even without pre-exposure. Accordingly, we predicted an interaction between pre-

exposure and the level of spatial integration of the stimuli with the effect of pre-

exposure on overall similarity sorting being greater for spatially integrated stimuli 

than for spatially separate stimuli. As in Experiment 2b we included a perceptual 

discrimination task after the categorization phase to examine whether relevant pre-

exposure improved the differentiation of the stimuli.

Method
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Participants and Apparatus. Eighty-seven students from the University of 

Exeter took part in the experiment either for course credits or for £5. Four additional 

participants were excluded for having incomplete data. Participants were tested in 

individual cubicles within a multi-testing lab (with up to eight participants tested 

simultaneously) using E-prime, on a Dell PC with a 17-in. monitor and a 

standard computer keyboard.

Stimuli. The four stimulus sets were closely based on the 

perceptually easy stimuli employed in Experiment 2b. For both the 

lamp and butterfly stimuli one of the sets had the dimensions 

integrated into a coherent object (spatially integrated), while the 

other set had the dimensions separated out (spatially separate). The

category prototypes for the four sets of stimuli are shown in Figure 

8. 

Design. The experiment had a 2 x 2 between-subjects factorial design. The 

first factor was the spatial separateness of the stimulus dimensions (two levels: 

spatially separate/spatially integrated). The second factor was the type of pre-

exposure, which also had two levels (same-stimuli/unrelated-stimuli). This led to 

four conditions: spatially integrated/same-stimuli exposure (24 participants), 

spatially separate/same-stimuli exposure (20 participants), spatially 

integrated/unrelated-stimuli exposure (23 participants) and spatially 

separate/unrelated-stimuli exposure (20 participants). In all conditions, the stimulus

set (either lamps or butterflies) that participants classified was randomized.

Procedure. The procedures for the running-recognition and categorization 

phases were identical to those in Experiments 2a and 2b. The perceptual 

discrimination task also had the same structure as in Experiment 2b, although here 
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participants were only tested on stimuli of the same level of spatial integration that 

they had encountered earlier in the experiment.

Results

The raw data for this experiment are publicly available at: https://osf.io/5cd34/

Running-recognition phase. Mean accuracy across conditions is displayed in 

Supplemental Figure 3. As in previous experiments, accuracy improved across blocks,

F (15, 1260) = 3.32, p < .001, η2
p = .04. Mean d’ was also 0.20 greater overall in the 

spatially integrated condition than the spatially separate condition, F (1, 84) = 7.95, p 

= .006, η2
p = .09. There was a significant interaction between spatial integration and 

block, F (15, 1260) = 1.82, p = .028, η2
p = .02, with performance rising more sharply 

across blocks in the spatially integrated than the spatially separate condition.

Categorization. The mean proportion of overall similarity, unidimensional 

and other categorizations produced in the four conditions are shown in Figure 9. 

There was a marginally significant effect of the level of spatial integration, F(1,83) = 

3.92, p = .051, η2
p =  .05, with the proportion of overall similarity sorting .17 higher in

the spatially separate condition than the spatially integrated condition. There was no 

statistical difference between the pre-exposure conditions, F(1,83) = 1.64, p = .203, 

η2
p = .02 (mean difference =  .11), but there was a significant interaction between 

spatial integration and pre-exposure type, F(1,83) = 4.33, p = .041, η2
p =  .05. This 

interaction reflected that overall similarity sorting was .28 greater in the same-stimuli 

condition than the unrelated-stimuli condition for the spatially integrated condition, 

t(45) = 2.61, p = .012, d = 0.76, but there was no statistical difference for the spatially 

separate stimuli, t(38) = -0.51, p = .610, d = 0.16 (difference = .07). In addition, for 

the marginally significant main effect of spatial integration we looked at the same-

stimuli and unrelated-stimuli groups separately. Overall similarity sorting was .34 
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higher in the spatially separate condition than the spatially integrated condition under 

unrelated-stimuli pre-exposure, t(41) = 2.86, p <.001, d = 0.87, but there was no 

statistical difference between  the spatial integration conditions for the same-stimuli 

exposure condition, t(42) = 0.07, p = .944, d = 0.02 (mean difference = .01).

For unidimensional sorting, the .11 difference between the spatially integrated 

and spatially separate conditions was not statistically significant, F(1,83) =  1.76, p 

= .188, η2
p =  .02, nor was the .05 difference between the pre-exposure conditions, 

F(1,83) = 0.25, p = .616, η2
p <.001.There was also no statistically significant 

interaction between spatial integration and pre-exposure type, F(1,83) = 2.29, p=.134, 

η2
p =  .03. For those participants who had some unidimensional sorts there was again a

tendency to consistently use a single dimension (mean proportion = .75).

 For Other responding, there was no statistically significant effect of spatial 

integration, F(1,83) = 1.16, p = .285, η2
p =  .01 (difference = .06), or pre-exposure, 

F(1,83) = 1.59, p = .210, η2
p =  .02 (difference = .06), and no statistically significant 

interaction between spatial integration and pre-exposure type, F(1,83) = 0.89, p = .49, 

η2
p =  .01. Other sorts, according to classification of the self-reports, were again a 

mixture of failed overall similarity (.34), failed unidimensional (.26), and other 

idiosyncratic (.41) strategies. According to the self-reports, participants attempted the 

same strategy on .86 of classifications.

Perceptual discrimination test. The mean accuracy (d’) in the perceptual 

discrimination test for the same-stimuli and unrelated-stimuli conditions is shown in 

Figure 10a.  Analyses were run in the same way as in Experiment 2b.5 The mean d’ of

stimuli that had been exposed during the running-recognition phase was 0.30 higher 

than for stimuli that had not been pre-exposed during running-recognition, F(1,83) = 
5 As before,  we also ran a four-way ANOVA, splitting the task into two halves as an additional factor to

ascertain whether there were any learning effects. Mean d’ was 0.03 higher in the first half than the second half but
this  was  not  statistically  significant,  F  (1,  83)  =  .16,  p  =  .694.  There  were  also  no  statistically  significant
interactions between session half and any of the other three factors. 
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11.70, p < .001, η2
p =  .12. There was no statistical difference between the same-

stimuli and unrelated-stimuli conditions, F(1,83) = 0.10, p = .757, η2
p = .001 (mean 

difference = 0.05). The 0.24 greater accuracy for the spatially separate stimuli than the

spatially integrated stimuli was also not statistically significant, F(1,83) = 1.81, p 

= .182, η2
p =  .02. There was likewise no statistically significant interaction between 

the running-recognition factor and level of spatial integration, F(1,83) = 1.51, p 

= .222, η2
p =  .02, but there was a significant interaction between the running-

recognition factor and categorization set (same-stimuli/unrelated-stimuli), F(1,83) = 

13.24, p < .001, η2
p =  .14, and a three-way interaction between running-recognition 

exposure, categorization set  and spatial integration, F(1,83) = 6.07, p = .016, η2
p 

=  .07. 

As before, we then analyzed the results for the same-stimuli and unrelated-

stimuli conditions separately to characterize the nature of this factor’s interaction 

with pre-exposure. For the same-stimuli conditions, mean d’ was 0.62 higher for 

stimuli that had been pre-exposed during running-recognition than stimuli which 

had not been pre-exposed, F (1,42) = 21.78, p < .001, η2
p = .34. While accuracy was 

0.31 higher for the spatially separate stimuli than the spatially integrated stimuli, 

this effect was not statistically significant, F(1,42) = 0.96. p = .332, η2
p = .02. 

However, there was a significant interaction between level of spatial integration and

running-recognition pre-exposure, F(1,42) = 5.964, p = .019, η2
p =  .12. 

Investigating this interaction further, for the spatially integrated stimuli, accuracy 

was 0.94 higher for the stimuli pre-exposed during running recognition than the 

stimuli that were not pre-exposed, t (23) = 5.39, p <.001, d = 1.10, while the 0.29 

difference between pre-exposure conditions for the spatially separate stimuli was 

not statistically significant, t (19) = 1.47, p = .158, d = 0.32. 
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For the unrelated-stimuli condition, the d’ difference of 0.02 between the 

stimuli pre-exposed during running-recognition and the stimuli that were not pre-

exposed was not statistically significant, F(1,41) = 0.03, p = .867, η2
p = .001. There 

was also no statistical difference between the spatially integrated and spatially 

separate stimuli, F(1,41) = 0.87, p = .357, η2
p =  .02 (difference = 0.21), and no 

statistically significant interaction between spatial integration and running-

recognition exposure, F(1,41) = 0.90, p = .349, η2
p <.001. 

The mean RT across conditions are shown in Figure 10b. The 78ms 

difference between the spatially integrated and spatially separate stimuli was not 

statistically significant, F (1,83) = 0.16, p = .687, η2
p = .002. There was also no 

statistical difference between the pre-exposure conditions, F(1,83) = 2.32, p = .131, 

η2
p = .03  (difference = 97ms) or between the same-stimuli and unrelated-stimuli 

categorization conditions, F (1, 83) = 0.49, p = .490, η2
p = .01  (difference = 134ms).

There was, however, a significant interaction between type of pre-exposure and the 

same/unrelated stimuli factor, F (1,83) = 13.95, p<.001, η2
p = .14, although none of 

the other interactions were statistically significant.6

For the same-stimuli condition, RT was 333ms quicker for stimuli that had 

been pre-exposed during running-recognition compared to stimuli that had not been,

F (1,42) = 24.76, p < .001, η2
p =  .37, but there was no statistical difference between 

the spatially integrated and spatially separate stimuli, F(1,42) = 0.85, p = .362,  η2
p =

.02 (difference = 298ms). There was also no statistically significant interaction 

between pre-exposure and spatial integration, F (1,42) = 0.75, p = .391, η2
p = .02.

For the unrelated-stimuli condition, the difference of 139ms between the 

stimuli that had been pre-exposed and the stimuli that had not been was not 

6 We again ran an additional ANOVA also including session half as an extra factor. Participants were 516ms
slower in the first half of the task than the second half, F (1, 83) = 63.97, p < .001,  η2

p  =.44. There were no
statistically significant interactions between session half and any of the other factors.
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statistically significant, F (1, 41) = 1.67, p = .203, η2
p = .04. There was also no 

significant effect of spatial integration, F(1, 41) = 0.48, p = .49, η2
p = .01 (mean 

difference = 143ms), and no statistically significant interaction between pre-

exposure type and spatial integration, F(1,41) = 0.20, p = .656, η2
p = .01.

Taken together, as in Experiment 2b, we found a notable difference in the 

pattern of results for the same-stimuli and unrelated-stimuli conditions, with the 

effect of pre-exposure much more marked for the same-stimuli condition. This 

plausibly reflects the fact that participants in the unrelated-stimuli condition had, by 

necessity, pre-exposure to both sets of stimuli, one in the running-recognition pre-

exposure phase and the other set in the categorization phase. This gave participants 

the opportunity to learn about the dimensions of both stimulus sets prior to the 

perceptual discrimination task. Given this, one might expect that in the unrelated-

stimuli condition, participants who produced a higher level of overall similarity 

sorting (and consequently demonstrating awareness of multiple dimensions) would 

perform better in the perceptual discrimination task which requires use of all the 

dimensions for optimal accuracy than participants who sorted by a single 

dimension. 

To investigate this possibility, we first collapsed across the perceptual 

discrimination tasks in the unrelated-stimuli conditions of Experiments 2b and 3 to 

increase power and then correlated the proportion of overall similarity sorts that 

participants produced against their d’ accuracy for the stimuli they had not viewed 

during running-recognition. This revealed a significant positive correlation, r(85) = 

0.35, p = .001 (looking at the experiments individually the results were: Experiment 

2b, r (41) = 0.25, p = .115; Experiment 3, r (43) = 0.29, p = .064). 
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On the other hand, a similar pattern emerged for the stimuli that the 

unrelated-stimuli condition participants had been pre-exposed to during running-

recognition, r (84) = .30, p = .006 (Experiment 2b, r (41) = .17, p = .285; 

Experiment 3, r (43) = .22, p = .161). The same pattern emerged as well as in the 

same-stimuli condition for the items that had been pre-exposed in running 

recognition, r(86) = .52, p < .001 (Experiment 2b, r (42) = .56, p < .001; Experiment

3, r (44) = .38, p = .01) and, perhaps most intriguingly, in the same-stimuli 

condition for stimuli which had not been pre-exposed during running-recognition, r 

(86) = .43, p < .001 (Experiment 2b, r (42) = .45, p = .002; Experiment 3, r (44) 

= .37, p = .013). This pattern of results is of interest in itself as it suggests that 

participants who utilize more of the dimensions during categorization are likely to 

perform better in a subsequent perceptual discrimination task that requires use of all 

the dimensions for optimal accuracy. Furthermore, the results of the same-stimuli/ 

not-pre-exposed condition suggest that participants who categorized by overall 

similarity in the categorization phase can transfer a multidimensional approach to 

stimuli in the perceptual discrimination task that they have not encountered before 

(for a somewhat analogous result, see Milton & Wills, 2009). However, this pattern 

does not provide much insight into why there is a difference in perceptual 

discrimination accuracy between the same-stimuli and unrelated-stimuli conditions. 

As such, the precise reason for the difference must remain a matter for speculation, 

but on the basis of the two experiments we ran the result appears robust. 

Discussion

Consistent with our predictions, we found a significant interaction between 

pre-exposure and the level of spatial integration of the stimulus dimensions. As in 

Experiments 1 and 2, when the stimuli were spatially integrated and the within-
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dimension differences relatively easy to distinguish we observed a significant 

elevation of overall similarity sorting in participants who had been pre-exposed to 

the stimuli compared to those who had been pre-exposed to a different set of 

stimuli. In contrast, when the dimensions were spatially separate we did not find a 

significant effect of pre-exposure. This pattern of findings is consistent with the idea

that pre-exposure enables participants to identify and more easily process the 

relevant dimensions which is necessary for participants to sort by overall similarity. 

When the dimensions are spatially separate, they are relatively easy to differentiate 

even without prior experience and the benefit of pre-exposure is consequently 

attenuated. 

This explanation is supported by the results of the perceptual discrimination 

test which was conducted after the categorization phase to directly assess whether 

perceptual learning had occurred. The results, for the same-stimuli but, as in 

Experiment 2b, not the unrelated-stimuli condition, mirrored the pattern observed in

the classification task. For the spatially separate stimuli, there was no difference in 

discrimination accuracy between stimuli which had been pre-exposed via running-

recognition and stimuli which had not been pre-exposed. In contrast, for the 

spatially integrated stimuli, perceptual discrimination was better and RT was 

quicker for stimuli which had been viewed during pre-exposure than stimuli which 

had not been. This pattern of results, therefore, is consistent with the idea that the 

increased ability to differentiate the spatially integrated stimuli after pre-exposure is 

driving the corresponding elevation in overall similarity sorting and this leads to an 

elimination of the spatial integration effect described by Milton and Wills (2004) 

where spatially separate stimuli evoke more overall similarity responding than 

spatially integrated stimuli.
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General Discussion

This paper presents a series of experiments which provide the first evidence 

that prior exposure to perceptual stimuli can increase the prevalence of overall 

similarity categorization. This effect was found for perceptually easy stimuli but not

for perceptually difficult stimuli (Experiments 2a and 2b) and was mirrored in 

Experiment 2b by the findings of a perceptual discrimination task which revealed 

that pre-exposure enhanced the ability of participants to differentiate between the 

perceptually easy stimuli but not the perceptually difficult stimuli (although this 

only emerged for the same-stimuli condition but not the unrelated-stimuli 

condition). Finally, in Experiment 3 we found that pre-exposure significantly 

elevated overall similarity categorization for spatially integrated stimuli but not for 

spatially separate stimuli with pre-exposure similarly improving differentiation for 

the spatially integrated stimuli but not for the spatially separate stimuli (again, 

though, this effect only emerged for the same-stimuli condition and not the 

unrelated-stimuli condition). 

An obvious first thing to consider is the process by which pre-exposure 

might lead to an increased likelihood of overall similarity categorization. According

to Combination theory (Wills et al., 2015; see also Milton & Wills, 2004), overall 

similarity sorting is the result of an effortful combination of information from the 

various stimulus dimensions. Participants process all the stimulus dimensions 

individually and use a rule to place the item into the category with which it has the 

most features in common. One necessary pre-requisite for overall similarity sorting 

of this kind is the ability to identify the individual dimensions so that the 

information from them can then be combined. Furthermore, the quicker that 
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participants can process the individual dimensions and differentiate the feature 

values, the easier such a strategy would be to perform, which should lead to an 

elevation of overall similarity sorting. A direct prediction of Combination theory, 

therefore, is that an increased ability to differentiate stimuli as a result of pre-

exposure should make an overall similarity strategy easier and, consequently, a 

more commonly applied strategy. 

An alternative process by which overall similarity sorting has been thought 

to occur is what we have previously termed Differentiation theory (Wills et al., 

2015; see also J.D. Smith & Kemler Nelson, 1984; Ward, 1983). This account posits

that stimuli are first processed as an undifferentiated whole and only later and with 

effort can they be broken down into their constituent parts. This account therefore 

assumes that overall similarity sorting should be a quick, more effortless, process 

than unidimensional sorting. According to this account, pre-exposure should make it

easier for participants to process dimensions at an individual level which should 

consequently make unidimensional sorting easier.  The increased overall similarity 

sorting and reduced unidimensional sorting that we observed as a result of pre-

exposure appears therefore to be more consistent with Combination theory than 

Differentiation theory.

One unexpected finding was that pre-exposure increased overall similarity 

sorting for the perceptually easy stimuli but not for the perceptually difficult stimuli,

which was the reverse pattern to that we predicted a priori. Nevertheless, it is 

consistent with the key tenet of Combination theory that a greater ability to 

differentiate the stimulus dimensions will lead to increased overall similarity 

categorization. The perceptually easy stimuli are relatively straightforward to 

distinguish which makes overall similarity sorting a relatively easy and quick 
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strategy to perform. Pre-exposure further increases the differences between the 

stimuli which leads to an additional elevation of overall similarity sorting. With the 

perceptually difficult stimuli, it is a difficult and time-consuming process to 

differentiate the feature-values for all the dimensions which makes an overall 

similarity strategy very effortful and time consuming to conduct. Instead, it is easier

and quicker for participants to base their categorizations on a single dimension. We 

suspect, in hindsight, that the reason we failed to detect any effect for the 

perceptually difficult stimuli was because they were so similar. This meant that the 

level of exposure provided was insufficient for perceptual learning to be detectable 

because even after pre-exposure the stimuli are likely to still look very similar with 

the differences being difficult and time-consuming to detect. Instead, it seems 

plausible during the categorization phase that participants in the perceptually 

difficult condition participants selectively attended to the dimension that they found 

most salient and paid less attention to the rest of the stimulus where variations were 

less easy to detect and this would also be the case in the perceptual discrimination 

task. In this regard, it appears that a necessary condition for pre-exposure to 

influence category behavior is for the stimuli to be conducive to overall similarity 

sorting – the extremely low levels of overall similarity sorting for the perceptually 

difficult stimuli in both Experiments 2a and 2b suggests that this was not the case 

for these stimulus sets. 

One possibility is that with more extended pre-exposure the perceptually 

difficult stimuli would become much easier to differentiate, which might then 

potentially facilitate overall similarity sorting. On the other hand, it is possible that 

with this additional pre-exposure participants will simply find it easier to 

differentiate the subset of the dimensions they initially focused on, and that this 
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would encourage them to persist with only using these dimensions, rather than 

learning more about the other dimensions. Future work distinguishing between 

these two possibilities would be of value.

One further important question is why our perceptual difficulty result 

appears inconsistent with previous work that indicates that the effect of pre-

exposure is most pronounced for perceptually difficult stimuli (e.g., Oswalt, 1972). 

Indeed, the rationale for making the perceptually difficult stimuli so similar was 

based on past work and theories of perceptual learning. One explanation is that the 

multi-dimensional stimuli and the small differences in the feature-values that we 

used in this experiment are unlike the types of stimuli that have previously been 

used to investigate the relationship between pre-exposure and perceptual difficulty. 

For example, in the classic study by Oswalt (1972), rats were trained on either 

easily discriminable stimuli (horizontal and vertical striations) or difficult to 

distinguish stimuli (circles and triangles).  Similarly, Chamizo and Mackintosh 

(1989; see also Trobalon et al., 1991) trained rats in intra-maze and extra-maze 

discriminations and found that pre-exposure aided learning when the cues shared 

many common features but when the differences between the cues were increased 

(e.g., by painting the walls of the arms in the maze black or white) pre-exposure 

retarded learning. We suspect that the effect of perceptual difficulty on pre-exposure

may be more complex than is typically recognized and perhaps follows a non-linear 

function. The present work indicates that it is difficult to observe perceptual 

learning for very hard discriminations (at least with the amount of pre-exposure we 

provided) but equally it appears likely that at the other extreme where the feature-

values are extremely different, perceptual learning would also be negligible as the 

discriminations would be easy even without pre-exposure. It would, therefore, be 
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useful in future work to more systematically characterize the relationship between 

perceptual difficulty and pre-exposure than has previously been done.

The finding that pre-exposure increased overall similarity categorization for 

spatially integrated stimuli but not for the spatially separate stimuli was consistent 

with our initial hypothesis. Spatially separating the dimensions has previously been 

found to increase overall similarity sorting and, consistent with Combination theory,

it has been argued that this is because it makes it easier to identify and process the 

dimensions of variation (Milton & Wills, 2004). We predicted that pre-exposure 

may act in a similar way by increasing between-dimension discriminability. 

According to this account, pre-exposure has a greater impact for spatially integrated 

stimuli than for spatially separate stimuli where the dimensions should be relatively 

easy to identify even without pre-exposure (in a similar manner to what we propose 

would happen with extremely easy perceptual discriminations). Consistent with this 

idea, we found greater overall similarity sorting for the spatially separate stimuli 

than the spatially integrated stimuli when they had not been pre-exposed but this 

effect was not present when the stimuli had been pre-exposed. This explanation also

receives direct support from the results of the perceptual discrimination test where 

pre-exposure significantly increased the differentiation of the spatially integrated 

stimuli but not the spatially separate stimuli. 

Is it possible that the only thing that pre-exposure does is enable participants

to identify better the dimensions which are varying? For example, if participants 

have only identified a single dimension of variation within the stimuli then it would 

be impossible to categorize them by overall similarity. While we believe that pre-

exposure does facilitate this, and the results of Experiment 3 in particular are 

supportive of this, we think that it is unlikely that this is the only thing that is 
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occurring as a result of pre-exposure. One reason for this is that previous work has 

shown that being able to identify all the dimensions (via a matching-pairs task 

described in the introduction) did not, on its own, yield an increase in overall 

similarity categorization (Milton & Wills, 2004). Instead, we suspect that improving

the identification of dimensions is just one of potentially several processes resulting 

from pre-exposure that is elevating overall similarity categorization. 

For example, it has been extensively documented that pre-exposure leads to 

an enhanced ability to make within-dimension discriminations (e.g., Gibson & 

Walk, 1956; for reviews see Goldstone, 1998; McLaren & Mackintosh, 2000; see 

our summary of the MKM model in the introduction as one theory that explains this

result). This would be consistent with the perceptual difficulty effect we identified 

in Experiments 2a and 2b where stimuli with greater differences in the feature-

values had increased levels of overall similarity sorting compared to stimuli with 

little difference in the feature values. Pre-exposure may act in a similar way to the 

perceptual difficulty manipulation we applied in Experiment 2 – both are likely to 

enhance within-dimension discriminations, which should as one consequence aid 

between-dimension discriminations, leading to a facilitation of overall similarity 

sorting according to Combination theory.

Additionally, pre-exposure may aid participants in identifying the inter-

correlation of features that is present in the category structures used in the present 

experiments (see Lassaline & Murphy, 1996 for a related illustration of this). For 

example, for the structure employed in Experiments 2 and 3 (shown in Table 2), 

knowing the value on Dimension 1, allows one to predict the value on any other 

dimension with 67% accuracy. In this regard, pre-exposure may serve a similar 

purpose to relevant background knowledge which has been taken to encourage 
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overall similarity sorting because it increases the salience of inter-dimension 

relationships that are otherwise difficult to discover (e.g., Lassaline & Murphy, 

1994; Spalding & Murphy, 1996).  An alternative, but perhaps complementary, 

effect is that the inter-correlation of features could itself enhance perceptual 

learning. For example, one assumption of the MKM model (McLaren et al, 1989) is 

that the effects of pre-exposure will be greater when features reliably co-occur than 

when they do not. This is because a greater level of feature inter-correlation would 

enhance the contribution of salience modulation that is assumed to underlie 

perceptual learning. 

A related possibility is that pre-exposure may lead to unitization, a process 

whereby individual dimensions or units can be bound into a single perceptual 

configuration (e.g., Goldstone, 2000; Schyns & Rodet, 1998; Welham & Wills, 

2011). If items are perceived holistically then this would likely encourage overall 

similarity categorization as this should be less effortful than breaking down the 

holistic object into its constituent parts as is likely needed for unidimensional 

categorization. It seems unlikely that unitization is driving the current pattern of 

results as informal inspection of the reaction times (RT) in all experiments (the 

sample size was too small in some cells to effectively run formal analyses) indicated

that in both the same-stimuli and unrelated-stimuli conditions overall similarity 

responding took longer than unidimensional sorting (see Section C of the 

Supplemental Materials for the descriptive data). If unitization had occurred, one 

might expect that the RT would be quicker in overall similarity sorting than 

unidimensional sorting under same-stimuli conditions. One important caveat is that 

the stimuli we have used here are quite different from those that have been used in 

previous demonstrations of unitization (e.g., the blob stimuli of Schyns & Rodet, 
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1998) which may make them less conducive to such a process. Nevertheless, the 

precise conditions under which unitization occurs are still not well understood so it 

remains plausible that it could emerge in this context with more extended pre-

exposure and/or with certain types of stimuli. 

As noted earlier, there has been debate about whether overall similarity 

sorting is best characterized as the result of a time-consuming, effortful, 

deliberative, process (Combination theory e.g., Milton et al., 2008; Wills et al., 

2015) or as the result of a quick, holistic, non-deliberative process (Differentiation 

theory e.g., Smith & Kemler Nelson, 1984; Ward, 1983; Ward, Foley, & Cole, 

1986). One intriguing possibility is that there may be a transition from a deliberative

to a non-deliberative approach with increasing exposure to stimuli via a process 

such as unitization. While speculative, this would be an interesting question for 

future research (see Milton et al., 2008 and Wills et al., 2015 for examples of how 

this could be done).  

A notable aspect of our experiments is that they all used a running-

recognition task to pre-expose the stimuli. One reason for using an active pre-

exposure task like this was to encourage participants to process the stimuli which 

arguably may be more likely than if participants had just been asked to passively 

view the stimuli. Nevertheless, the running-recognition task should not be 

considered a canonical or neutral method for pre-exposing stimuli and there are 

many other ways in which it could have been done effectively. For one thing, the 

current task loads more heavily on declarative memory processes than other tasks 

one might use. (such as a pleasantness rating, counting the number of dimensions 

present, passive viewing). It also seems likely that different pre-exposure tasks will 

encourage attention to all of the stimulus dimensions to a greater or lesser extent. 
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An important implication of this is that some pre-exposure tasks may potentially 

elevate overall similarity categorization more than others. One study that illustrates 

this was conducted by Lassaline and Murphy (1996) who found that a pre-exposure 

task where participants had to count the number of dimensions led to less overall 

similarity sorting than a task where participants had to make inductive inferences 

during the pre-exposure phase. Clearly, then, an important goal for future research 

would be to understand better the impact that different types of pre-exposure can 

have on overall similarity sorting. This is of interest in itself but is likely to also 

provide insight into the mechanisms by which the pre-exposure effect we have 

observed here operates.

In summary, one of the most notable findings in unsupervised categorization

research is that people have a strong tendency to form single-dimension categories 

and will rarely spontaneously group items according to overall similarity (e.g., Ahn 

& Medin, 1992; Medin et al., 1987). In recent years, there has been a growing 

appreciation that certain manipulations such as stimulus presentation method 

(Regehr & Brooks, 1995), the spatial separateness of the stimulus dimensions (e.g., 

Milton & Wills, 2004), instructional manipulations (Wills et al., 2013), and 

background knowledge (e.g., Spalding & Murphy, 1996) can increase overall 

similarity sorting. The present study provides evidence for a further two 

manipulations that can be added to this list. The first of these is that stimuli whose 

dimensions are easy to discriminate lead to more overall similarity sorting than 

stimuli where the differences are difficult to discriminate. While this in many ways 

seems intuitive, it does underscore the fact that in many related studies the 

categories used are arguably more similar to each other than is typically the case 

outside the lab (unless one is dealing with subordinate categories which non-experts



48

can often have difficulty acquiring). Second, while we have identified boundary 

conditions for the effect of pre-exposure (i.e., it does not appear to be present for 

spatially separate stimuli and for stimuli where the stimuli are extremely similar to 

each other), we have provided clear evidence that relevant pre-exposure can 

significantly elevate overall similarity sorting in perceptual stimuli. Again, this 

effect, while previously not documented in the literature, appears relatively 

intuitive. Outside the lab we typically have a great deal of exposure to the stimuli 

we are required to categorize. Given this, it is surprising that nearly all extant 

studies have provided participants with little or no pre-exposure before asking them 

to classify the stimuli in a meaningful way. Taken together, our results provide new 

insight into the relationship between the characteristics of the stimuli and perceptual

learning and identify two new factors that facilitate overall similarity sorting.
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Appendix 

Instructions for the running-recognition phase

Thank you for agreeing to take part in this study. You will see a number of pictures. 

Your task is to decide whether you have seen an identical version of that picture 

previously. If you have previously seen the picture within the current block, press X. 

If you have not seen the picture previously within the current block, press M. There 

will be 16 blocks in total, with 24 trials per block. You must treat each block 

independently from the others. In other words only say that you have seen that picture

if you have seen it previously in that block. Please ask the experimenter if you have 

any questions. Press the spacebar to continue.

Instructions for the categorization phase
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Please read the following instructions carefully.  Two pictures will be displayed at the

top of the screen. One of these (on the left) will be characteristic of category A and 

the other (on the right) will be characteristic of category B. These two characteristic 

pictures will be present throughout the experiment. Directly under these two 

characteristic pictures, another will be presented. Your task is to put this lower picture

into either Category A (by pressing X) or into category B (by pressing M). There are 

many ways in which these pictures can be split and there is no correct answer. We are 

just interested in what you think is the most appropriate way to sort these pictures. 

There is no time limit and you are encouraged to take as much time as you need to 

complete the task. In total, there will be 12 pictures to categorize in a 'block' and there

will be 6 blocks in total. There will be an opportunity to rest at the end of each block, 

if you so wish. If you have any questions, please ask the experimenter before you start

the task. Please press the spacebar to continue.

Instructions for the categorization response booklet

For block (x), please note down how you categorized the stimuli in as much detail as 

possible.

Instructions for the perceptual discrimination task (Experiments 2b and 3 only)

In the final part if this study, there will be 48 trials. On each trial you will see two 

pictures. Your task is to say whether the pictures are identical or whether they differ 

in some way. If you think they are identical please press x. If you think that they 

differ please press m. You will be provided feedback about whether you are correct at 

the end of each trial. Please ask the experimenter if you have any questions and then 

press the space bar when you are ready to continue.
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Table 1

The Abstract Stimulus Set Used in Experiment 1.

                  Category A                    Category B 
 D1 D2 D3 D4  D1 D2 D3 D4 
E1 1 1 1 1 E6 0 0 0 0 
E2 1 1 1 0 E7 0 0 0 1 
E3 1 1 0 1 E8 0 0 1 0 
E4 1 0 1 1 E9 0 1 0 0 
E5 0 1 1 1 E10 1 0 0 0 
 

Note. Each row (within each category) describes a different stimulus. D 
= dimension: 1 and 0 represent the values of each dimension.
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Table 2

The Abstract Stimulus Set Used in Experiments 2 and 3.

                      Category A                         Category B  

 D1 D2 D3 D4 D5  D1 D2 D3 D4 D5 
E1 1 1 1 1 1 E7 0 0 0 0 0 
E2 1 1 1 1 0 E8 0 0 0 0 1 
E3 1 1 1 0 1 E9 0 0 0 1 0 
E4 1 1 0 1 1 E10 0 0 1 0 0 
E5 1 0 1 1 1 E11 0 1 0 0 0 
E6 0 1 1 1 1 E12 1 0 0 0 0 

 
Note. Each row (within each category) describes a different stimulus. D = 
dimension: 1 and 0 represent the values of each dimension.
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