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Abstract

Considerable behavioral evidence has been cited in support of
the COVIS dual-system model of category learning (Ashby &
Valentin, 2016). The validity of the inferences drawn from
these data critically depend on the accurate identification of
participants’ categorization strategies. In the COVIS literature,
participants’ strategies are identified using a model-based anal-
ysis inspired by General Recognition Theory (Maddox, 1999).
Here, we examine the accuracy of this analysis in a model-
recovery simulation. We find that participants can appear to
be using implicit, procedural strategies when their responses
were actually generated by explicit rule-based strategies. The
implications of this for the COVIS literature are discussed.

Keywords: categorization; COVIS; dual-systems accounts;
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Introduction
Categorization studies rarely examine individual differences.
Rather, researchers look at group performance to draw con-
clusions about the likely underlying mechanisms of category
learning (Kurtz, 2015). For these inferences to be valid, the
participants in each group must all learn in a qualitatively
similar way (Maddox, 1999). Then, relatively little infor-
mation is lost by averaging. However, severe interpretative
difficulties can arise if participants learn in a variety of ways,
as then the average will likely not represent the behaviour of
any single person (Siegler, 1987).

This issue is more than hypothetical, as there is substan-
tial evidence, and a degree of consensus, that different partic-
ipants use qualitatively different strategies in categorization
tasks (e.g., Nosofsky & Zaki, 2002; Raijmakers, Dolan, &
Molenaar, 2001; Wills, Inkster, & Milton, 2015). For exam-
ple, some participants categorise stimuli on the basis of just
one stimulus dimension (as in Figure 1B), or do so initially,
even if optimum performance on the task requires using mul-
tiple stimulus dimensions (as in Figure 1B, where the partici-
pant’s strategy is single-dimensional but the optimal classifi-
cation strategy is diagonal).

COVIS (COmpetition between Verbal and Implicit Sys-
tems; Ashby & Valentin, 2016) is one model that aims to
predict when and why participants use different strategies.

COVIS assumes that categorization is mediated by two, par-
allel, competing systems: an Explicit System and a Proce-
dural System. The Explicit System is assumed to implement
rule-based strategies (such as in Figure 1B). Therefore, CO-
VIS predicts this system will optimally learn category struc-
tures that are implementations of simple rules (such as in
Figure 1A). If rule-based strategies result in poor accuracy—
because the category structure is not rule-based and thus diffi-
cult to verbalise—COVIS predicts the Procedural System will
gain control of responding. As the Procedural System is pre-
dicted to implement a variety of strategies (including the one
demonstrated in Figure 1A), it is capable of implementing the
optimum strategy for information-integration category struc-
tures (the structure, but not the strategy, shown in Figure 1B).

Typical COVIS-supporting experiments look for a differ-
ential effect of an experimental manipulation (e.g. feed-
back timing) on rule-based and information-integration cat-
egory structure learning (for a review, see Ashby & Valentin,
2016). The category structure manipulation is hoped to elicit
a switch in the learning system controlling responding: be-
cause participants are learning a rule-based or information-
integration category structure they will use the appropriate
strategy and so be using the Explicit or Procedural System,
respectively. If the experimental manipulation affects one
category structure condition more than the other, the exper-
imenter infers that it affects the accuracy of one system more
than the other, thereby providing evidence for a dual-system
model of category learning.

For these experiments, the presence of subsets of
qualitatively-different participants can be particularly prob-
lematic. Critically, the conclusion that the experiment sup-
ports a dual-system model depends on the assumption that
the participants in each category structure condition used the
most appropriate system to learn those structures. In other
words, that participants used the Explicit System to learn the
rule-based category structure, and the Procedural System to
learn the information-integration category structure. If this
is not the case, any differences in overall accuracy between
category structure conditions might be due to varying rates of
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Figure 1: Two example strategies implemented on two category structures: A) a unidimensional category structure with a
diagonal (GLC) strategy applied, B) an information-integration category structure with a unidimensional rule applied. Category
structure: dots represent Category A, and squares Category B. Responses: Filled symbols indicate a participant responded “A”,
open symbols indicate they responded “B”.

sub-optimum strategies between conditions, rather than to the
existence of two category learning systems.

To illustrate this point, consider an experiment that exam-
ined the effect of deferring feedback and found it caused a
reduction in performance by 10% for a particular category
structure (such as in Smith et al., 2014). In the ideal case, all
participants classifying a particular category structure would
be using the same optimum strategy and all those in the rel-
evant condition would be similarly affected by the manipu-
lation; participants with deferred feedback would score 10%
less than those with immediate feedback. Here, we could use
standard group-accuracy analyses validly. However, if some
participants were using other, sub-optimum strategies then
drawing conclusions from the experiment is harder. One pos-
sibility is that the manipulation, within a given category struc-
ture, changes the relative proportions of different strategies
used in each condition (feedback type). This would change
average accuracy because, given a particular category struc-
ture, the highest accuracy for each strategy varies. A sec-
ond possibility is the manipulation has a differential effect
depending on the strategy type being used. For example, the
manipulation could have had no effect on people using the
optimum strategy, but could severely affect performance re-
liant on sub-optimum strategies (see Schnyer et al., 2009, for
a similar argument).

To avoid the possibility that any dissociation in accuracy
is due to the effects of sub-optimum strategies rather than

two competing systems, COVIS-supporting experiments use
a strategy analysis informed by General Recognition Theory
(GRT; Ashby & Gott, 1988). This analysis is used as a ma-
nipulation check to determine which strategy each participant
is using. This approach (hereafter, GRT analysis) assumes
that strategies can be modeled by a (usually linear) decision
bound that passes through stimulus space (such as those in
Figure 1). For each participant, a variety of strategy models
are fitted to their responses. The one that best represents that
participant’s pattern of responding is selected. Then, each
participant’s strategy is compared to the category structure
they were assigned to learn. If enough participants are found
to be using the optimum strategy for the category structure
they were assigned, then the category structure manipulation
is assumed to have elicited a corresponding shift in category
learning system. Under this assumption, any dissociations in
accuracy can be validly ascribed to the existence of two sys-
tems.

Using GRT analysis as a manipulation check is logically
valid if and only if GRT analysis consistently and accurately
identifies participants’ strategies. In other words, GRT anal-
ysis must be able to correctly identify strategies under a va-
riety of circumstances such as differing category structures,
experimental manipulations and levels of noise. Unfortu-
nately, recent evidence from our lab suggests that GRT anal-
ysis does not accurately recover the strategies participants
use for information-integration category structures. For in-
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stance, Edmunds, Milton, and Wills (2015) extended an ex-
periment by Ashby, Maddox, and Bohil (2002) looking at
feedback type by asking the participants to verbally describe
their strategies. A substantial number of responders classified
as using the Procedural System on the basis of GRT analy-
sis nevertheless reported using an explicit rule-based strategy
(which have been predictive of behaviour in other procedures;
Wills, Milton, Longmore, Hester, & Robinson, 2013).

One possible explanation for this contradiction is that par-
ticipants did not accurately report their strategies. Two pieces
of evidence speak against this interpretation. First, verbal re-
ports successfully predict participants’ performance in other
tasks (Lagnado, Newell, Kahan, & Shanks, 2006). Second,
Carpenter, Wills, Benattayallah, and Milton (2016) found
more frontal and medial temporal lobe activation for partic-
ipants learning an information-integration category structure
than for participants learning a rule-based structure. These
brain regions are typically associated with explicit process-
ing (Nomura et al., 2007), implying that classification of an
information-integration category structure is at least as ex-
plicit in their study as classification of a rule-based structure.

A more interesting explanation for the disparity in strate-
gies found by Edmunds et al. (2015) is that the GRT analysis
is wrong. For example, because GRT analysis normally uses
just the training stimuli rather than a broad range of trans-
fer stimuli, perhaps it is biased towards the optimal strat-
egy for each category structure? Work by Donkin et al.
(2015) provides some support for this conjecture. Specifi-
cally, Donkin et al. found that including transfer stimuli from
across the stimulus space reduced the proportion of partici-
pants classified as using the optimal (diagonal) strategy for
an information-integration category structure.

The possibility that GRT analysis does not accurately
recover the strategies participants use makes determining
whether category learning is mediated by two learning sys-
tems more difficult. Consider an experiment that found
that feedback delay harmed information-integration category
learning but had no effect on unidimensional rule-based cate-
gory learning. Furthermore, suppose that GRT analysis found
that all the participants used the optimum strategy for the cat-
egory structure they were presented with. If GRT analysis
were accurate, we might conclude that the source of this inter-
action was the presence of two different systems. However, if
GRT analysis was inaccurate this inference would not be the
only one we could make. For example, if GRT analysis, in
the information-integration conditions, falsely identified an
explicit conjunction rule strategy as a diagonal (procedural)
strategy, an alternative account might be that feedback delay
impacts learning once participants are using sufficiently com-
plex rules. This would be consistent with a single-system ac-
count and would potentially cast doubt on all of the COVIS-
supporting studies that used this method.

However, a limitation of all work to date is that one
can never be sure whether GRT analysis contains significant
flaws, because one does not know which strategy participants

were actually using. When employing data from real partic-
ipants, all we have are multiple forms of assessment of their
strategy (GRT analysis, verbal reports, brain activations etc.),
all of which provide indirect and potentially flawed informa-
tion. Using one measure to assess the quality of the others
includes the circularity of assuming one of the measures is
correct. In the current article, we use a model-recovery ap-
proach to break out of this loop.

Model recovery involves simulating hypothetical partici-
pants’ responses according to the strategy models defined by
the strategy analysis. By simulating responses we circumvent
many of the problems with Donkin et al. (2015) and Edmunds
et al. (2015), as now we know exactly which model each (sim-
ulated) participant is using. From these hypothetical, sim-
ulated participants we can then use GRT analysis to identify
the strategies from the responses to see whether GRT analysis
is capable of recovering the correct generating model. This
model-recovery procedure is recommended as best practice
for any cognitive modeling analyses (Heathcote, Brown, &
Wagenmakers, 2014) but has yet to be done for GRT analy-
sis.

Simulation of Smith et al. (2014)
Below, we use model-recovery techniques to demonstrate that
current GRT analyses misidentify participants’ strategies in
the context of levels of performance accuracy reported in pub-
lished work. Further, we demonstrate that it is possible for all
participants to be using rule-based strategies but to still find
a) an interaction between an experimental manipulation and
category structure, and b) that the majority of participants are
(incorrectly) identified by GRT analysis as using the optimum
strategy for each category structure.

The experiment we chose for this demonstration is by
Smith et al. (2014); a recent, representative example of empir-
ical work within the COVIS framework (Ashby & Valentin,
2016). This experiment investigated the effect of defer-
ring feedback on category learning. Participants were ran-
domly assigned to learn either a rule-based or information-
integration category structure (as in Figure 1) with one of two
possible reinforcement schedules. In the immediate feedback
condition, on each trial participants were shown a stimulus,
then made their response and were immediately given correc-
tive feedback for that trial. In the deferred feedback condi-
tion, the stimuli were shown in groups of six. The participants
made responses for all six stimuli but only received correc-
tive feedback at the end of the block. Smith et al. found that
learning of the rule-based category structure was unaffected
by this change in feedback timing, whereas learning of the
information-integration category structure was “eliminated”
(p. 454) with deferred feedback.

As well as being representative of the majority of COVIS
experiments (Ashby & Valentin, 2016), the work reported in
Smith et al. (2014) is interesting to simulate as it is represen-
tative of the direction that the role of GRT analysis is begin-
ning to take in newer COVIS experiments (see also, Smith
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et al., 2015). In these newer studies, the authors move away
from using the GRT analysis to ensure that participants were
using the optimum strategy, and therefore category learning
system, in each condition. Instead, they use the GRT analysis
to determine the strategies that participants use in order to dis-
cern whether deferring feedback alters the strategies partici-
pants use in “a theoretically meaningful way” (p. 452). Smith
et al. (2014) conclude that deferred feedback pushed par-
ticipants in the information-integration condition away from
classification via the Procedural system towards classification
via the Explicit system. These conclusions would of course
be substantially undermined if their GRT analysis failed to
correctly identify the strategies participants used.

The possibility of a misidentification of participant strate-
gies would also open the way for an alternative, single-
system, account of their results. As previously discussed,
verbal report data from Edmunds et al. (2015), and neu-
roscience evidence from Carpenter et al. (2016), indicate
that participants sometimes learn information-integration cat-
egory structures using complex, verbalisable rules—despite
the GRT analysis pointing towards procedural (GLC) strate-
gies in these cases. Perhaps this is also happening in Smith
et al. (2014)? Specifically, we hypothesize that the major-
ity of participants in the immediate information-integration
category structure condition of Smith et al. are using a con-
junction or another two-dimensional rule-based strategy, but
this is mis-identified as an implicit (GLC) strategy by Smith
et al.’s GRT analysis. The possibility of this kind of mis-
identification seems particularly acute in this study because
those authors did not include a conjunction rule (or any other
complex rule) in the set of models for their GRT analysis. Re-
search by Donkin et al. (2015) suggests that failing to include
complex rules in a GRT analysis increases the proportion of
participants that are identified as procedural (GLC) respon-
ders.

Method
To see whether it was possible that all the participants in
Smith et al. (2014) were using rule-based strategies, we first
generated a set of hypothetical participants. These partic-
ipants’ responses were generated from unidimensional and
conjunction strategy GRT generating models that best fit ei-
ther the unidimensional or information-integration category
structures used by Smith et al. The unidimensional models
where straight lines that passed perpendicularly through ei-
ther the x-axis or the y-axis. Stimuli that lay on one side of
the line were assigned “Category A” and those on the other
“Category B.” The conjunction models consisted of two lines
perpendicular to each other that partitioned off a quarter of
the space. The stimuli in that quarter were assigned “Cate-
gory A” and those outside “Category B.”

We then added various levels of noise to these hypothet-
ical participants and calculated their accuracy. Twenty par-
ticipants were generated for each level of noise, category
structure and generating strategy. Then we performed the
GRT analysis, which included three model types: unidi-
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Figure 2: Simulation of Smith et al. (2014); bars are empiri-
cal data; plot points are the simulation. Smith did not report
standard deviation.

mensional, diagonal (GLC) and random models (Maddox &
Ashby, 1993). Note that although some simulated partici-
pants’ responses were generated by a conjunction strategy,
this strategy type was not included in the GRT analysis. This
was to keep the GRT analysis as similar as possible to the
one conducted by Smith et al. (2014). We then selected 21
simulated participants (i.e. the same N as Smith et al., 2014)
for each condition such that, as far as was possible, they had
a) the same average accuracy as that reported by Smith et al.
(p. 451, their paper; Figure 2, current paper), b) the same
number of “strong learners” (p. 541, their paper), and c) were
identified by GRT analysis as using the same distribution of
strategy types reported by Smith et al. (p. 452-453, their pa-
per; Table 1, this paper).

Results
In addition to the simulated participants having the same
average accuracy (see Figure 2) and same distribution of
GRT-recovered strategies (see Table 1) as the real partici-
pants in Smith et al. (2014), it was also possible to repli-
cate Smith et al.’s statistical tests. For the simulated partici-
pants, the critical interaction between category structure and
task was significant, F(1,80) = 10.64, p = .002. Further-
more, as in Smith et al. (2014), performance in the two rule-
based conditions were statistically indistinguishable, t(40) =
0.44, p = .663, as was the comparison between the unidi-
mensional and information-integration immediate conditions,
t(40) = 1.22, p = .228. Whereas, the difference between the
two information-integration category structure conditions did
reach significance, t(40) = 4.98, p < .001

Table 1 shows that it is possible to generate the statisti-
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cal pattern and strategy model results reported in Smith et al.
(2014), without resorting to a second Procedural System. In-
stead, all the so-called implicit responders found by Smith
et al. (2014) could have been using rule-based strategies that
were misidentified by the GRT analysis.

Table 1: GRT analysis of simulated participants for Smith et
al. (2014). Counts in bold are from real participants, as re-
ported by Smith et al. (2014), and are also the simulation
results (the simulation exactly reproduces the observed dis-
tribution of recovered models). Remaining counts show how
the two groups of generating models used in this simulation
(UD and CJ) were recovered by the GRT analysis. So, for ex-
ample, of the 18 UD generating models used in the UD-Imm
condition, 13 were correctly recovered as UD.

Recovered strategies
UDx UDy GLC RND

UD-Imm. 13 1 1 6
Gen. model: UD 13 1 1 3
Gen. model: CJ 0 0 0 3

UD-Def. 15 2 0 4
Gen. model: UD 15 2 0 2
Gen. model: CJ 0 0 0 2

II-Imm. 0 3 16 2
Gen. model: UD 0 3 0 1
Gen. model: CJ 0 0 16 1

II-Def. 2 13 3 3
Gen. model: UD 2 4 0 0
Gen. model: CJ 0 9 3 3

Strategies: UDx = Unidimensional based on the x-dimension, UDy = Unidimen-
sional based on the y-dimension, GLC = General linear classifier, RND = Ran-
dom.

General Discussion
The influential COVIS model of category learning is sup-
ported by a great deal of behavioural data (Ashby & Valentin,
2016). Predominantly, this evidence comes from a single ex-
perimental methodology which examines the effect of a factor
on rule-based and information-integration category learning.
COVIS predicts that its two systems can implement different
strategy types, and so each will learn one of these category
structures better than the other. Critically, the validity of the
inferences from this paradigm hangs on correctly identify-
ing the strategy each individual used to complete the learning
task. This is because the experiments investigating COVIS
cannot directly control which system participants use to re-
spond. Instead, they manipulate the category structures and
hope that this encourages participants to use the optimum sys-
tem, and thus the correct strategy, for that category structure.
Of course, participants may continue to use the sub-optimum
system for a particular category structure. Thus, identifying
the strategies participants use is crucial: if the participants are
using the correct strategy for that category structure, then the
experimenters assume that they must also be using the cor-

rect learning system for that structure. Then, any differential
effects of a manipulation on each category structure can be at-
tributed to the existence of two systems of category learning,
not differing numbers of sub-optimal responders.

Despite its importance for the COVIS model, there is ex-
perimental (Edmunds et al., 2015) and modeling (Donkin et
al., 2015) evidence to suggest that GRT analysis may be bi-
ased towards concluding that participants were using the opti-
mum strategy for the category structure. To explore this pos-
sibility, we simulated an experiment by Smith et al. (2014)
and showed that it was possible to reproduce their means,
inferential statistics and strategy analysis using only partic-
ipants who used rule-based strategies. Simulated participants
classified the information-integration category structure using
a conjunction rule, but were recovered by the strategy analy-
sis as using a diagonal (GLC) strategy. This raises the possi-
bility that participants in Smith et al. were, correspondingly,
using rule-based strategies in classifying the information-
integration category structure. In other words, Smith et al.
cannot be construed as clear evidence for dual-system ac-
counts of category learning, as a single-system (rule-based)
account also fits all the data (accuracy and GRT analysis) they
presented.

Implications for the COVIS model

The reported simulation demonstrates an inferential weak-
ness in experiments argued to support COVIS: GRT analy-
sis is not accurate enough to act as a manipulation check. It
cannot determine whether manipulating the category struc-
ture successfully elicited a corresponding switch in the cate-
gorisation system underlying participants’ responses. Conse-
quently, it is difficult to judge whether a particular COVIS-
supporting dissociation is due to the existence of two dis-
tinct learning systems, or rather due to participants using
different explicit strategies to learn each category structure.
This increases uncertainty over conclusions of a swathe of
COVIS-supporting studies that rely on comparing rule-based
and information-integration category structures (see Ashby &
Valentin, 2016, for a partial list).

In relation to the experimental work by Edmunds et al.
(2015), and Edmunds, Wills, and Milton (2016), this sim-
ulation also strengthens the evidence that participants can
correctly report their categorisation strategies. In those ex-
periments, participants learning information-integration cat-
egory structures consistently reported using complex, rule-
based strategies. In contrast, the GRT analysis identified these
participants as using the correct (i.e. diagonal) strategy. In the
above simulation, it was shown that participants using a con-
junction rule were likely to be misidentified in GRT analysis
as using a diagonal (GLC) strategy. Therefore, it seems plau-
sible that all participants learn information-integration cate-
gory structures explicitly, using rule-based approaches, but
GRT analysis misidentifies some of these as using an implicit
(GLC) strategy.
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Conclusions

The simulation reported above indicates that drawing conclu-
sions from GRT analysis is risky. This has a knock on effect
on the COVIS-supporting studies that rely on this analysis as
a manipulation check. More investigations need to be done to
understand which strategies participants use and how they are
affected by the category structure being learned before we can
be sure that experimental dissociations in this literature sup-
port a dual-system model of categorization. In other words,
we advocate closer attention to due process in the evaluation
of dual-system (and single-system) models.
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