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ABSTRACT

In the phenomenon of transfer along a continuum (TAC), initial training on easy
items facilitates later learning of a harder discrimination. TAC is a widely replicated
cross-species phenomenon that is well predicted by certain kinds of associative theory
(e.g., Sutherland & Mackintosh, 1971). A recent report of an approximately-opposite
phenomenon (i.e. facilitation by initial training on hard items, Spiering & Ashby,
2008) poses a puzzle for such theories, but is predicted by a dual-system model (CO-
VIS; Ashby et al., 1998). However, across four experiments we present substantial
evidence that Spiering and Ashby’s conclusions were in error. Their result appears
to be a false positive and, as such, should not form part of the evidence base for
COVIS, nor be considered as a counter-example to the pervasive TAC phenomenon.

KEYWORDS
categorisation; transfer along a continuum; implicit; explicit

In the phenomenon of transfer along a continuum (TAC), initial training on easy
items facilitates later learning of a harder discrimination (Lawrence, |1952). For exam-
ple, consider an experiment that aims to teach animals to discriminate between two
grey squares that vary slightly in brightness. TAC is shown if the group of animals who
were initially trained to discriminate a black square and a white square perform better
at test on the grey squares than the animals who were trained on the grey squares
throughout (Lawrencel 1952)). In humans, TAC has been found across a variety of
stimulus types, including faces (Suret & McLaren, 2003]), mammograms (Hornsby &
Love, [2014) and birdsong (Church, Mercado, Wisniewski, & Liu, [2013).

In a classic experiment, Mackintosh and Little (1970) demonstrated that the TAC
effect persists even when the response mappings are reversed between the training
and test phase. Their demonstration was with pigeons, but an analogous result was
subsequently shown in humans (Suret & McLaren, [2003)). The fact that TAC persists
across a reversal is generally considered to support the idea that TAC is a consequence
of increased attention to the relevant stimulus dimension (Lawrence, |1952; |Sutherland
& Mackintoshl, |1971)). Specifically, the participants who were initially trained on the
easy discrimination were more easily able to identify and attend to the critical dimen-
sion of variability, thus improving their performance on the more difficult task. The

C. E. R. Edmunds. Email: ceredmunds@gmail.com. We would like to acknowledge the contribution to the
study of Transfer Along a Continuum made by Professor Nick Mackintosh, FRS, who passed away during the
preparation of this article. He will be sadly missed. We also thank Gemma Williams for her assistance in the
coding of the strategy-report questionnaires discussed in ths article.



advantage this attentional re-allocation provides is assumed to more than offset the
cost introduced by the reversal. Although this account can be expressed in terms of
stimulus dimensions, it can also be captured by formal models that are purely elemen-
tal in nature (McLaren & Mackintoshl 2002; Suret & McLaren, |2003)). Thus, the core
of the standard account of TAC is that attention is directed towards those aspects of
the stimulus that are the best predictors of the outcome (Mackintosh [1975)). This idea
has subsequently motivated a wide range of research on the relation between attention
and learning; for a recent review, see |Le Pelley, Mitchell, Beesley, George, and Wills
(2016).

In contrast to the empirical and theoretical consensus concerning TAC, [Spiering and
Ashby! (2008]) reported an approximately opposite finding. In their experiment, partic-
ipants were trained on a two-category discrimination task using one of three training
orders: easy-to-hard, hard-to-easy, or random. For brevity, we will focus on the first
two orders, as the random condition adds nothing of consequence to the conclusions.
In the easy-to-hard condition, participants first saw the easy stimuli, which were fur-
thest from the category boundary (see Figure , followed by the moderate-difficulty
stimuli, and then the hard stimuli, which were closest to the category boundary. In
the hard-to-easy condition, participants saw the stimulus types in the opposite or-
der. Finally, the participants were tested on all the stimuli in the category structure.
Spiering and Ashby found that, for the particular category structure shown in Figure
1, participants who were given hard-to-easy training had better performance on the
final all-items test than those given easy-to-hard training.

Spiering and Ashby| (2008) argue that their result is best explained in terms of the
COVIS model (COmpetition between Verbal and Implicit Systems; Ashby, Alfonso-
Reese, Turken, & Waldron, 1998} |Ashby, Paul, & Maddox], [2011)). This model assumes
that learning, at least in humans, is mediated by two parallel competing systems. The
Explicit System learns by testing verbalisable hypotheses. In contrast, the Procedural
system is hypothesised to be implicit and gradually associates stimuli with responses.

According to COVIS, normal adults begin learning using simple verbalisable rules
mediated by the Explicit System, only switching to the Procedural System if these
rules result in poor performance. For the particular category structure used in their
experiment (see Figure (1)), a simple rule-based strategy based on a single stimulus
dimension (e.g., bar frequency) results in excellent performance with the easy stimuli
(100%), but poor performance when classifying the moderate (80%) and difficult (60%)
stimuli closer to the category boundaryE] The Procedural System, given sufficient
opportunity, can perform well on all three stimulus types. Hence, according to COVIS,
participants in both conditions would tend to eventually switch to the Procedural
System, but would do so at different times. Participants in the easy-to-hard condition
would switch to the Procedural System relatively late in training because using the
Explicit System initially resulted in high levels of accuracy. In contrast, the participants
in the hard-to-easy condition would score lower using a simple unidimensional rule from
the outset, and so would more quickly realise that “no explicit strategies will succeed”
(Spiering & Ashby, 2008, p. 1171). They would then more quickly switch to using the
more optimal Procedural System to learn the structure, and so score more highly on
the moderate difficulty (Block 2) items, and in the final all-items test (Block 4).

The difference in final test performance found by [Spiering and Ashby| (2008)
can be interpreted as consistent with Spiering and Ashby’s account, or with the

INote that Figure [1f slightly misrepresents these accuracy scores, due to drawing the stimuli across areas of
space rather than as points.



approximately-opposite TAC result, depending on whether one assumes it is the initial
(Block 1) training, or the most recent (Block 3) training that primarily determines
performance on the final test. Spiering and Ashby| argue that the effect of training or-
der they observe is due to the type of stimuli the participant saw initially (in Block 1).
However, the stimuli in the training block just prior to the final test block (Block 3) are
hard in the easy-to-hard condition and easy in the hard-to-easy condition. Therefore,
it is possible that participants’ performance in the final all-items test phase reflects the
most recent, rather than the initial, training. If this were the case, their results would
be consistent with TAC: participants who saw the easy stimuli in Block 3 performed
better in Block 4 than those who saw the hard stimuli in Block 3.

However, Spiering and Ashby’s experiment contains a further result that more di-
rectly supports their conclusion. Specifically, performance in Block 2 (moderate dif-
ficulty items) was better if Block 1 contained hard stimuli than if Block 1 contained
easy stimuli. This directly supports their conclusion that initial training on difficult
items improves performance, relative to initial training on easy items. This result, be-
ing approximately opposite to TAC, poses something of a puzzle for theories, such as
Sutherland and Mackintosh! (1971, that predict the presence of TAC effects.

Experiment 1

In[Experiment 1} we attempted to directly replicate the first two blocks of Experiment 1
of Spiering and Ashby| (2008). We did not include the final two blocks, due to the
confound inherent in that part of their design (see the above discussion of the initial-
training vs. recent-training confound), but our experiment was otherwise identical to
theirs. We expected this attempt at replication to be successful, on the grounds that
previous published attempts to directly replicate parts of experiments from Ashby’s
lab have been successful. For example, previous critiques of COVIS-inspired empirical
work have primarily been based on the presence of confounds, rather than failure
to replicate per se (Edmunds, Milton, & Wills, 2015; Newell, Dunn, & Kalishl [2010;
Newell, Moore, Wills, & Milton, 2013).

Method

Participants

The participants were 40 undergraduate psychology students recruited from Plymouth
University participant pool and were randomly assigned to one of the two conditions
(N=20 in each). They received research credit in exchange for their participation.

Category structure and stimuli

The stimuli were sine-wave gratings displayed on a grey background, and were identical
to those used in [Spiering and Ashby] (2008]). The stimuli are shown in Figure

Design

This experiment had a single between-subjects factor with two levels: easy-to-moderate
and hard-to-moderate. In Block 1, participants in the easy-to-moderate condition were
shown stimuli that were easy to classify (as they were far from the category boundary).
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Figure 1. The stimuli used in represented in abstract stimulus space. The diagonal line rep-
resents the optimal category bound. The two categories are labelled A and B. Also included are the stimulus
difficulties for Category A: the stimuli furthest from the decision boundary are the easy stimuli and those
closest to the category boundary are the hard stimuli.

In contrast, participants in the hard-to-moderate condition were shown stimuli that
were difficult to classify (as they were close to the decision boundary). Then in Block 2,
participants in both conditions were shown stimuli that were moderately difficult to
classify. The design was identical to the first two blocks of Spiering and Ashby! (2008).
However, unlike [Spiering and Ashby, we did not include a random condition, as this
condition appeared to provide no useful additional information.

Materials

The experiment was run using MATLAB with the Psychophysics Toolbox (Brainard
11997 |Pelli, [1997)) extensions on a desktop computer with a 21.5-inch screen.

Procedure

On each trial, a stimulus and the category labels were displayed on a white back-
ground until the participant had responded by pressing either the “D” or “L” key. If a
participant failed to respond after 5000ms had passed, a screen displaying “PLEASE
RESPOND FASTER” was shown to them for 500ms. If the participant responded,
500ms of audio feedback was played to them over headphones. For correct responses,
the tone was a 262Hz sine-wave, which sounds similar to a low-pitch tuning fork. For
incorrect responses, the tone was a 400Hz saw-tooth, which is a higher-pitched, harsher
sound. The inter-trial interval was 1500ms.

There were two blocks of 150 trials each, resulting in a total of 300 trials. In each
block, 10 stimuli were presented in a random order 15 times. The stimuli presented in
each block depended on the condition to which the participant was assigned. In Block 1,
participants in the easy-to-moderate condition were shown only the easy stimuli, those



furthest from the decision boundary; participants in the hard-to-moderate condition
were shown only the hard stimuli, those closest to the decision boundary. In Block 2,
the participants in both conditions were shown the moderately difficult stimuli in a
random order, 15 times each, with feedback.

Additionally, after the experiment was completed, participants were asked to fill in
a questionnaire. This aimed to determine which strategy they had used to categorise
the stimuli. They were asked to “Imagine that another person was asked to complete
the experiment as you did. What instructions would you give them so that they could
exactly copy your pattern of responding?” They were given a large box in which to
fill in their answer and asked to respond as precisely as possible.

Analysis

We calculated Bayes Factors. This is because, in traditional null-hypothesis significance
testing, non-significant results are ambiguous: they could either be due to insufficient
statistical power or due to the null hypothesis being correct (Dienes, 2011)). It is
important to be able to distinguish between these two possibilities.

By convention, if the Bayes Factor is over three then the experiment has found
evidence for the experimental hypothesis, whereas if the Bayes Factor is less than a
third, the experiment finds evidence for the null hypothesis (Jeffreys, |1961). A Bayes
Factor of one indicates that the evidence is exactly neutral with respect to the ex-
perimental and null hypotheses (Dienes, [2011). Values between a third and three are
typically interpreted as indicating that the experiment was not sensitive enough and
no conclusions can be drawn.

The Bayes Factors for the accuracy data in the experiments in this article were cal-
culated according to the procedure recommended by Dienes| (2011]) using the R script
implemented by Baguley and Kaye (2010). The predicted differences between the easy-
to-moderate and hard-to-moderate conditions were estimated directly from |Spiering
and Ashby| (2008]). The inclusion of the mean difference in Spiering and Ashby’s origi-
nal study as the prior of our Bayes Factor calculation treats their result as the evidence
available prior to running our studies, and then uses the result of our studies to update
that evidence.

For Block 1, we assumed a two-tailed normal distribution for the prior with a
predicted mean difference of 0.101 and predicted standard deviation of 0.054. E| For
Block 2, we assumed a two-tailed normal distribution with predicted mean difference
of -0.139 and standard deviation of 0.07. Bayes Factors for the reaction time data were
not calculated as average reaction times were not reported in the original |Spiering and
Ashby| (2008) experiments.

All data analyses were conducted in R (R Core Team, 2017). All trials for which
the reaction time was greater than 5000ms were removed.

Results

Three participants in the easy-to-moderate condition scored considerably below chance
(less than 0.15 in Block 1 compared to chance at 0.50) and so were excluded from the
following analyses. The results are displayed in Figure 2l The trial-level raw data

2In Dienes (2011), the standard deviation of the prior is typically defined as half the mean; this captures the
belief that the true mean difference could plausibly take a range of values, but that an effect in the opposite
direction to that previously observed is unlikely. A side effect is that the prior for small effects is more precise
(lower s.d.) than the prior for large effects.
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Figure 2. The average accuracy and reaction time for each block in each condition in Error
bars are difference-adjusted between-subject 95% confidence intervals (Baguley} 2012]).

for are available at www.willslab.org.uk/ply22 with md5 checksum
69¢146c069d338bd4e2d2c0029bda3dd Pl

During Block 1, as expected, performance on the hard stimuli was worse than perfor-
mance on the easy stimuli, ¢(35) = 6.71, d = 2.21, p < .001, BF > 1 x 10°. However,
this initial difference in accuracy had no effect on accuracy in Block 2, #(35) = 0.88,
d=0.29, p = .387. Indeed, there was substantial evidence for the null as the Bayes
Factor was less than a third, BF' = 0.07. The Bayes Factor remains in favour of the null
hypothesis (BF < 1/3) even if the predicted mean difference between the conditions
is reduced by two thirds to —0.046, SDgg = 0.023.

The Block 1 sample mean difference between conditions was 0.194, with a standard
error of 0.029. The Block 2 sample mean difference was 0.035, with a standard error
of 0.040.

The reaction time data was consistent with the accuracy data. During Block 1,
reaction time for the hard stimuli was higher than reaction time for the easy stimuli,
t(35) = 3.07, d = 1.01, p = .004. However, in Block 2 there was no significant difference
between conditions, #(35) = 0.88, d = 0.29, p = .384. Additional strategy analyses are
reported towards the end of the paper.

3Publication of a checksum allows the reader to independently confirm that the raw data in the archive is
unchanged.
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Discussion

Using the category structure illustrated in Figure [1} |Spiering and Ashby| (2008) found
that hard initial training improved performance on moderate-difficulty stimuli, relative
to easy initial training. They argued that this finding supported the COVIS model of
category learning (Ashby et al., 1998, 2011). Their result is also an approximately
opposite effect to the well-established phenomenon of Transfer Along a Continuum
(Lawrence, 1952). In we aimed to replicate Spiering and Ashby’s effect.
However, in contrast to [Spiering and Ashby], we failed to find an advantage for either
training order. Indeed, we found substantial Bayesian evidence for the null hypothesis.
In other words, initially seeing the easy or hard stimuli had no effect on performance
with the subsequent moderate-difficulty stimuli.

Experiment 2

It is possible that we failed to find an effect in because certain aspects of
the procedure added additional noise, thereby obscuring the effect. First, it is plausible
that the unusual choice of feedback could have misled some of our participants. In
both |Spiering and Ashby| (2008) and the feedback was a 500ms tone
administered over headphones. However, the mapping of tone pitch to the feedback
was not intuitive: the higher tone indicated incorrect responses and the lower tone
indicated correct responses. This is not common practice in other studies within the
COVIS canon (e.g., [Ell & Ashby, 2006), nor more broadly in experimental psychology,
or even in other non-experimental settings such as game shows. So it is possible that
this feedback may have been consistently misinterpreted by some participants. This
idea is further supported by the fact that three participants had scores well below
chance (<15%). This level of performance indicates that they learned the category
structure but pressed the wrong keys for each category. Furthermore, as [Spiering
and Ashby| did not apply a learning criterion, it is possible that their sample also
included participants like these, that went undetected in their analyses. Failing to
use learning criteria has previously produced interpretative difficulties in some other
COVIS-inspired experiments (e.g., Newell et al., 2010)E|

Another feature of the procedure that may have added additional noise is the choice
of stimuli. In the verbal reports of which are discussed in more detail in
a later section, participants described several eclectic stimulus features that appeared
to map onto the bar width dimension. These features included how “zoomed in” the
stimulus was, whether the stimulus was symmetrical or not, how many bars there
were, and the amount of contrast between light and dark. Using these representations
may undermine the inferences we wish to draw from this experiment. For example, it
is possible that the “zoom” property maps onto the experimenter-defined dimension
of interest (bar width) in a non-linear way. This type of mapping corresponds to sub-
regions of the stimulus space being stretched, which may alter the representation of
the category structure in ways that are hard to predict.

To address these potential issues, in we repeated using
line stimuli varying in length and angle, and visual feedback, i.e. “Correct” or “In-
correct!”. Line stimuli have been used in previous COVIS-inspired experiments (e.g.,
Filoteo, Lauritzen, & Maddox, 2010) and seem less likely to produce eclectic stimulus

4We requested Spiering and Ashby’s trial-level raw data but did not receive a data set that they wanted to
endorse as veridical.



representations than Experiment 1’s sine-wave gratings. Visual feedback is common-
place throughout the study of category learning, and seemed likely to be less confusing
than Experiment 1’s counter-intuitive tone-based feedback.

Method

Participants

The participants were 43 undergraduate psychology students recruited from the Ply-
mouth University participation pool. They were randomly assigned to either the easy-
to-moderate condition (N=20) or the hard-to-moderate condition (N=23). They re-
ceived research credit in exchange for their participation.

Category structure and stimuli

The abstract category structure was identical to that used in Experiment 1 of [Spiering
and Ashby| (2008) and above. However, this category structure was
instantiated with black line stimuli that appeared on a white background. These stimuli
varied in the length of the line and its orientation. The variation in the length of the
lines were matched to the variation of line length in previous research (e.g., Edmunds
et al., 2015; Filoteo et al., [2010)). To do this, we calculated the linear scaling factor
that would transform the bar-frequency value to a corresponding line-length value,
such that the minimum and maximum values were 25 and 285 respectively. These
values were the length of the line in pixels. The orientation of the lines was the same

as the orientation of the sine-wave gratings in

Procedure

The procedure for this experiment was identical to that of aside from
changing the feedback type. Rather than using 500ms tones, we displayed either ‘Cor-
rect’” or ‘Incorrect!” in black in the centre of the screen for 500ms. Also, due to an
oversight, we did not give these participants the strategy questionnaire after training.

Analysis

All trials for which the reaction time was greater than 5000ms were removed.

Results

No participants scored below chance, so the following analyses are conducted
on all participants. The results are displayed in Figure The trial-level
raw data are available at www.willslab.org.uk/plyl2 with md5 checksum
3e3f1fb62d3d810b201b6b1c00£1£b86.

During Block 1, as expected, performance on the hard stimuli was indeed worse
than performance on the easy stimuli, ¢(41) = 7.52, d = 2.30, p < .001, BF > 1 x 10°.
However, this initial difference in accuracy had no effect on learning performance in
Block 2, ¢(41) = 1.18, d = 0.36, p = .246. Indeed, there was substantial evidence for the
null, BF' = 0.05. The Bayes Factor remains in favour of the null hypothesis (BF < 1/3)
even if the predicted mean difference is reduced by 6/7 to —0.02, SDg;g = 0.01. The
Bayes Factors were calculated using the same technique and prior as described in
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Figure 3. The average accuracy and reaction time for each block in each condition in Error
bars are difference-adjusted between-subject 95% confidence intervals (Baguley} [2012)).

Here, in Block 1, the sample mean difference was 0.181, with a standard
error of 0.024. For Block 2, the sample mean difference was 0.025, with a sample
standard deviation of the difference of 0.021.

The reaction time data was consistent with the accuracy data. During Block 1,
performance on the hard stimuli was slower than responding on the easy stimuli,
t(41) = 2.96, d = 0.90, p = .005. However, in Block 2 the difference between conditions
was not significant, ¢(41) = 0.58, d = 0.18, p = .567.

Discussion

Spiering and Ashby| (2008) found that participants who were initially trained on a dif-
ficult discrimination had better performance on subsequent moderate-difficulty items
than participants who were initially trained on the easy version of that discrimination.
In contrast, in an attempted replication reported in we found evidence
for the absence of a difference between training-order conditions. We postulated that
this may have been due to the non-intuitive choice of feedback: the mapping from
correct /incorrect to tone pitch was opposite to that usually seen in psychology experi-
ments. We also thought that the psychological stimulus representation of the sine-wave
gratings of might be more complex and varied than the experimenter-
defined representation. Both these things might, at the very least, add noise and
obscure the presence of an effect. In we attempted to address these
potential issues by changing the feedback from tones to visual feedback, and using
lines varying in length and angle, rather than sine-wave gratings. However, this failed
to make a difference: participants in both conditions still performed equally well in
the final block.



Experiment 3

In Experiments 1 and 2, we examined whether hard-to-moderate training, compared to
easy-to-moderate training, resulted in superior performance on learning the category
structure shown in Figure [l Contrary to Spiering and Ashby| (2008), we failed to
find an effect of initial training type on final performance: both easy and hard initial
training resulted in the same level of performance in Block 2. Additionally, a Bayesian
analysis found evidence for the null hypothesis. This suggests that there is genuinely
no difference between our training-order conditions. It also suggests that the effect
reported by [Spiering and Ashby| may have been a false positive.

That being said, Spiering and Ashby| (2008) found a difference at two points in
their four-block design: in Block 2 with just the moderately-difficult stimuli, and also
in Block 4 with all the stimuli. Our Experiments 1 and 2 only examined participants’
performance on the moderately-difficult stimuli. Therefore, it may be that if we had
included all the stimuli at test we might have found an effect of training order.
therefore employs an all-items test, rather than a moderate-difficulty-items
test, to examine this possibility.

Aside from the absence of a training-order effect, the results of our Experiments
1 and 2 differ from those of |Spiering and Ashby| (2008) in another way. Specifically,
performance in Block 2 of their experiment (averaged across conditions) was about
80%. In both of our experiments, it was closer to 90%. Hence, for whatever reason,
it seems our participants did a bit better on this task than Spiering and Ashby’s
participants. Thus, one possible explanation of why Spiering and Ashby observed a
training-order effect whilst we did not is that, in our studies, it is obscured by a

ceiling effect. In we investigated this possibility by reducing stimulus
presentation time, which (we presumed) would reduce overall performance levelsﬂ

Method

Participants

The participants were 38 undergraduate psychology students recruited from the Ply-
mouth University participation pool. They were randomly assigned to either the easy-
to-all (N=18) or hard-to-all (N=20) conditions. They were awarded research credit in
exchange for their participation.

Procedure

The format of the experiment remained similar to that in However, now
the line stimulus was shown for 350ms rather than until the participant responded.
Additionally, after the stimulus, a mask was displayed until the participant responded.
The mask was constructed by placing every line stimulus three times on a white
background with each end of the stimulus randomly displaced along both stimulus
dimensions by a number of pixels randomly drawn from a uniform distribution between
-120 and 120. The mask ensured that participants could only visually process the to-
be-classified stimulus for the allotted 350ms.

As in at the end of the experiment participants were also asked to

5We initially thought that just changing from a moderate-difficulty test to an all-stimuli test might, by itself,
lower overall Block 2 performance. However, a pilot study, not reported in this paper, discounted this possibility;
the pattern of performance was almost identical to that in the previous experiments.

10
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Figure 4. The average accuracy and reaction time for each block in each condition in Error
bars are difference-adjusted between-subject 95% confidence intervals (Baguley} [2012)).

report the strategy that they used to learn the category structure.

Analysis

All trials for which the reaction time was greater than 5000ms were removed.

Results

No participants scored below chance, so the following analyses were con-
ducted on all participants. The results are displayed in Figure The trial-
level raw data are available at www.willslab.org.uk/ply42 with md5 checksum
ccec6982393ac850f7£04£87107210d.

During Block 1, as expected, performance on the hard stimuli was worse than per-
formance on the easy stimuli, ¢(36) = 10.40, d = 3.38, p < .001, BF > 1 x 10%. The
reduction in stimulus presentation time, relative to Experiments 1-2, also had the
expected effect, with mean Block 2 performance (across conditions) close to 80%.
However, the Block 1 difference in accuracy still had no effect on learning performance
in Block 2, ¢(36) = 0.48, d = 0.157, p = .633. Indeed, there was substantial evidence
for the null, BF = 0.05. The Bayes Factor remains in favour of the null hypothesis
(BF < 1/3) even if the predicted mean difference is reduced by 3/4, to —0.03475,
SDgig = 0.0175.

These Bayes Factors were calculated using the same technique and prior as described
in[Experiment 1] Here, for Block 1, the sample mean difference was 0.227, with a sample
standard error of 0.022. For Block 2, the sample mean difference was 0.013, with a
sample standard error of 0.027. As the current experiment looked at performance on

11


www.willslab.org.uk/ply42

1.0
0.9 4
>
Q
g
>
Q
Q
<< 0.8
c
i)
o]
o
2 074
o
c
I
O
=
0.6
-@- Easy-to-all
0.5 =O= Hard-to-all
1 1 1
Easy Moderate Hard

Stimulus Type

Figure 5. The average accuracy for each stimulus difficulty level in Error bars are difference-
adjusted between-subject 95% confidence intervals (Baguleyl, [2012)).

all stimuli (easy, moderate, and hard) in Block 2, some might argue that using a
prior based on Block 4 of Experiment 1 of Spiering and Ashby| (2008) might be more
appropriate (as this was the block in their experiment in which all stimulus difficulties
were presented). Use of this prior makes no difference to the conclusions drawn about
Experiment 3.

The reaction time data was consistent with the accuracy data. During Block 1,
responding on the hard stimuli was slower than responding on the easy stimuli,
t(36) = 3.42, d = 1.11, p = .002. In Block 2, the difference between conditions was
not significant, ¢(36) = 1.16, d = 0.378, p = .252.

Additionally, because the participants in each condition saw all the stimuli in
Block 2, we were able to examine the difference between the conditions at each level
of stimulus difficulty (see Figure [f)). A mixed ANOVA found a significant main effect
of stimulus difficulty, F(2,72) = 167.76, nZ = 0.50, p < .001. As stimulus difficulty in-
creases, average accuracy decreases. Additionally, there was a significant interaction
between stimulus difficulty and condition, F(2,72) = 4.95, nZ = 0.03, p < .01. A sim-
ple main effects analysis found that the difference between conditions for the easy
stimuli approached significance, ¢(36) = 1.88, p = .068; performance was numerically
higher in the easy-to-all condition than in the hard-to-all condition for these stimuli.
The difference between conditions did not reach significance for either the moderate,
t(36) = 0.29, p = .772, or the hard stimuli, #(36) = 0.32, p = .754.

12



Discussion

Spiering and Ashby (2008) found that participants who were initially trained on a
harder version of a classification task had superior performance to participants who
were initially trained on the easiest version of the task. In contrast, Experiment 3, like
Experiments 1 and 2, found substantial evidence for the null—the difficulty of initial
training did not affect performance on a subsequent test. Experiment 3 added to the
previous two demonstrations of a null effect by showing it under conditions where a
ceiling effect at test was unlikely (because overall performance at test, averaged across
conditions, was around 80% correct, well below ceiling for this task, and similar to the
overall performance levels observed in Spiering and Ashby).

Experiment 3 also demonstrated that the null effect was not limited to the moderate-
difficulty test items used in Experiments 1-2, but also persisted when the test items
were a mix of low-, moderate-, and high-difficulty stimuli. As all the participants saw
all the stimuli in the Experiment 3 test phase, we could also look to see whether there
was any interaction between stimulus difficulty and condition. Such an interaction
was observed, but the simple effects were inconclusive—no significant effect of initial
training was observed at any of the three stimulus difficulties.

On the basis of the non-significant trends, one might argue that something akin
to a TAC effect was observed, given that easy initial training numerically facilitated
test performance on easy items, relative to hard initial training. One argument that
this was not an example of TAC comes from the fact that participants in the easy-to-
hard condition had seen the easy stimuli before, so this effect may just be an effect
of stimulus familiarity. However, speaking against this, there was no such advantage
for the hard stimuli in the hard-to-all condition compared to the easy-to-all condition.
Overall, it seems unwise to attach much theoretical weight to an interaction where
none of the simple effects are significant. However, it may be possible to pursue the
issue further in future research.

Experiment 4

Spiering and Ashby (2008) reported a single experiment in which they found that
initial training on difficult items facilitated performance with subsequent moderate-
difficulty items, relative to initial training with easy items. In the current paper, we
have reported three experiments in which this effect was not found. Indeed, these
experiments all found evidence for the null hypothesis that there was no difference in
performance between the two conditions.

Collectively, these three experiments indicate that the original effect in Block 2 re-
ported by Spiering and Ashby (2008) was likely to have been a false positive (Type I
error). However, a critic might potentially observe that our attempts to replicate in-
volved only the first two blocks of Spiering and Ashby’s four-block experiment. In
particular, the final block of their experiment (Block 4) was used by them to support
the claim that initial training on difficult items is advantageous. In Experiments 1-3,
we chose not to run Blocks 34, because the data they generate is hard to interpret
(see Introduction). Nevertheless, one could argue that it is of some interest whether
the results of the second half of their experiment are real but hard to interpret, or
are, alternatively, also the product of a Type I error. Hence, in this final experiment,
we performed a direct replication of the full four-block design of Experiment 1 from
Spiering and Ashby.
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Method

Participants

The participants were 55 undergraduate psychology students recruited from the Uni-
versity of Exeter participation pool. They were randomly assigned to either the easy-
to-hard (N=27) or hard-to-easy (N=28) condition.They received research credit in
exchange for their participation.

Category structure and stimuli

The stimuli were sine-wave gratings displayed on a grey background that were identical

to those used in |Spiering and Ashby| (2008) and [Experiment 1} The stimuli used are
shown in Figure

Procedure

Participants were tested in individual testing booths and asked to focus on accuracy
of responding. The experimental procedure was identical to that in
however two extra training blocks were added. There were 4 blocks of 150 trials each,
resulting in a total of 600 trials. In the three training blocks, each of the stimuli were
presented in a random order 15 times. The order in which the blocks were presented
depended on the condition to which the participants were assigned. In the easy-to-
hard condition, participants were shown only the easy stimuli, far from the category
boundary in Block 1, the stimuli of moderate difficulty in Block 2 and the hard stimuli,
close to the category boundary, in Block 3. In the hard-to-easy condition, the training
blocks were shown to participants in the opposite order. Block 4 in both conditions
showed all the stimuli in a random order, 5 times each, with feedback. This experiment
was identical to that reported by |Spiering and Ashby (2008).

After completing the experiment, participants were asked to complete the strategy
questionnaire.

Analysis

In addition to the Bayesian analyses conducted on Blocks 1 and 2 in the experiments
above, here it is also necessary to look at Block 4. In Block 4, we assumed a two-tailed
normal distribution with a predicted mean difference of -0.15, and predicted standard
deviation of 0.075. These values were estimated from the results presented in |Spiering
and Ashby| (2008]).

Results

The trial-level raw data are available at www.willslab.org.uk/ply75 with md5 check-
sum £3803£34d292f58eae0a7686ce784277.

The average accuracy for each block across the experiment is shown in Figure [6]
Three participants were excluded from the hard-to-easy condition because they scored
below 0.3 for the majority of the experimentﬁ This resulted in 27 participants in the
easy-to-hard condition and 25 in the hard-to-easy condition.

For this experiment, the Bayes Factors were calculated using the same technique
and prior as described in for the first two blocks. Here, for Block 1, the

60ne participant throughout the experiment and two in Blocks 2 to 4
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Figure 6. The average accuracy and reaction time for each block in each condition in Error
bars are difference-adjusted between-subject 95% confidence intervals (Baguley} [2012)).

sample mean difference was 0.184, with a sample standard error of 0.045. For Block 2,
the sample mean difference was 0.009, with a sample standard error of 0.038. The
Bayes Factor for Block 4 was calculated using the prior defined in the Method section.
The sample mean difference for Block 4 was -0.049, with a sample standard error of
the difference of 0.029.

Following |Spiering and Ashby| (2008), we compared the mean differences between
the conditions at both Block 2 and Block 4. These blocks are where the participants
in both conditions saw the same stimuli (moderate-difficulty stimuli in Block 2, and
all stimuli in Block 4), and so their performance can be compared fairly.

During Block 1, performance on the easy stimuli was better than performance on
the hard stimuli, ¢(50) = 4.09, d = 1.13, p < .001, BF = 1356. However, this initial
difference in accuracy did not produce a significant effect on learning performance in
Block 2, t(50) = 0.56, d = 0.15, p = .581. Indeed there was substantial evidence for
the null as the Bayes Factor was below a third, BF' = 0.09. The Bayes Factor remains
in favour of the null (BF < 1/3) even if the predicted mean difference is reduced by
a half to —0.070, SDgg = 0.035.

This pattern of results is also supported by the reaction time data. During Block 1,
performance on the hard stimuli was slower than performance on the easy stimuli,
t(50) = 2.96, d = 0.82, p = .005. However, in Block 2 the difference was not significant,
t(50) = 0.56, d = 0.15, p = .581.

The data in the first two blocks are consistent with the findings of Experiments 1-3.
However, to ascertain whether [Spiering and Ashby| (2008) was an example of a Type
I error, it is also important to see whether there was any difference in performance at
Block 4. In Block 4, performance in the hard-to-easy condition was numerically higher
than performance in the easy-to-hard condition. This difference was not significant as
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Figure 7. Average accuracy for each condition for each stimulus type in the Test (Block 4) phase of the
experiment. Error bars are 95% difference-adjusted between-subject confidence intervals (Baguley, [2012]).

a two-tailed test, t(50) = 1.71, d = 0.48, p = .093, but was significant one-tailed. One
could potentially argue that a one-tailed test is merited, given the theoretical predic-
tions and previous results of [Spiering and Ashbyl in which case one would conclude
that we successfully replicated their Block 4 effect. On the other hand, the Bayes
Factor was 0.71, indicating that it would be unwise to update one’s beliefs about the
veracity of Spiering and Ashby’s Block 4 result on the basis of the current experiment.

A further analysis was conducted of Block 4. In Block 4, it is possible to compare
accuracy for the different stimulus types in each condition as in |Spiering and Ashby
(2008). Such a comparison is not possible in Block 2 of the current experiment, as it
contains only one type of stimulus (moderate-difficulty stimuli), and is not meaningful
in Blocks 1 or 3, as people in different conditions saw different stimuli in these blocks.

The results of this additional analysis of Block 4 are shown in Figure [7] We con-
ducted an ANOVA between condition and stimulus type on the Block 4 data. Here, the
relevant contrasts are Huynh-Feldt corrected as Mauchly’s test of sphericity was sig-
nificant, W = 0.77, p = .002. The main effect of difficulty was statistically significant,
F(2,100) = 143.19, n = 0.34, p < .001. As one might expect, the easy stimuli were
categorised with higher accuracy than the difficult stimuli. The main effect of condition
reached significance only as a one-tailed test, F'(1,50) = 2.94, 77% = 0.05, p = .093. The
interaction term did not approach significance, F(2,100) = 0.30, 77?; = 0.00, p = .743.

Discussion

The first half of |[Experiment 4| confirmed the results found in Experiments 1, 2 and 3:
although there is a significant difference in performance between conditions in Block 1,
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this effect disappears by Block 2. The results of the second half of Experiment 4, in
particular Block 4, are best described as equivocal, due to a Bayes Factor close to unity.
Nevertheless, given that the result was significant in the same direction as Spiering
and Ashby observed if a one-tailed test is used, it may also be instructive to consider
the interpretation of these second-half results under the assumption that they are real.

On this basis, interpreting this Block 4 effect is difficult, because the conditions vary
on the stimuli seen in Block 1, the stimuli seen in Block 3 and the order of stimulus
difficulty over time. However, as there was evidence for an absence of a difference in
performance between the conditions in Block 2, the Block 4 effect appears more likely
driven by the stimuli that the participants saw in Block 3, rather than the stimuli
they saw in Block 1. Under this assumption, Block 4 of the current experiment is
an example of transfer along a continuum: training on the easy stimuli (for those in
the hard-to-easy condition) in Block 3 results in better performance in Block 4 than
training on the hard stimuli (for those in the easy-to-hard condition). In other words,
to the extent that the Block 4 result in Experiment 4 is real, it is more consistent
with the well-established phenomenon of TAC, than with the approximately opposite
interpretation offered by Spiering and Ashby (2008).

Strategy analyses

Model-based strategy analysis

The evidence above indicates that the Block 2 effect reported in Experiment 1 of
Spiering and Ashby] (2008) was a false positive and that the Block 4 effect, if genuine,
is arguably more consistent with TAC than with the predictions of the dual-system
model COVIS. However, a proponent of COVIS might raise the following objection: it
is possible that category learning is mediated by dual systems of learning, but that the
majority of participants in these particular experiments did not switch to the optimum
Procedural System for the category structure (for whatever reason). If this was the
case, failing to find a difference between conditions would be predicted by the COVIS
model.

To overcome this sort of objection, experimental work within the COVIS litera-
ture uses a model-based analysis to determine which strategy the participant is using
(e.g., Maddox & Ashbyl, [1993)). The model-based analysis determines which of a set of
experimenter-selected decision-bound models best describes the pattern of responding
for each participant (Maddox & Ashby, 1993). Details of this analysis can be found in
the Appendix; Table [I| summarises the main results. Specifically, Table [I] shows that,
in Blocks 2 and 4, the probability of the best-fitting model being the optimum model
for the category structure, is high in every experiment. According to the logic of the
analysis (as used in the COVIS literature), Table [I| indicates that our participants
are using the Procedural System to learn this category structure. Therefore, the fail-
ure to find evidence of initial training on final performance cannot be attributed to
participants never being able to switch to the Procedural system. So, this particular
objection from a COVIS perspective turns out to be unfounded.

Further inspection of Table[I] reveals some aspects of this analysis that seem counter
to COVIS’s predictions of what should happen in these experiments. Specifically, in
Block 2 of Experiments 2, 3, and 4, the evidence for a switch to the Procedural
System is greater in the easy-first condition than the hard-first condition. This is
opposite to the predictions of the COVIS account. Specifically, COVIS predicts that
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Table 1. The normalised probability that the optimum diagonal strategy is preferred over rule-based strate-
gies.

Condition Experiment
1 2 3 4
Fasy first
Block 1 0.34 0.29 0.21 0.50
Block 2 0.82 0.99 0.85 0.77
Block 3 - - - 0.66
Block 4 - - - 0.77
Hard first
Block 1 0.64 0.71 0.59 0.44
Block 2 0.69 0.99 0.78 0.73
Block 3 - - - 0.51
Block 4 - - - 0.88

the hard-first training should increase the proportion of participants found to be using
the Procedural System (opposite to what is observed in this analysis). Block 2 of
Experiment 1 is at ceiling on this measure and so uninformative in this regard. Only
Block 4 of Experiment 4 shows the COVIS-predicted direction of effect although this,
like the behavioural result itself, is hard to interpret due the inherent primacy-recency
confound of the second half of this design (see Introduction).

Looking further at the data from Table [1| it may also be tempting to draw con-
clusions about Block 1 (and Block 3 of Experiment 4). For instance, looking at the
entries for Block 1 in Table [, you can see that the probabilities that the optimum
(diagonal) strategy is used are higher in the hard-first condition than the easy-first
condition. Some might argue that this pattern of results supports the predictions of
COVIS: that participants in the hard first conditions switch faster to the Procedural
System and can thus implement the optimum diagonal strategy faster. Unfortunately,
the model-based analysis cannot be used in this way.

This comparison is problematic because the results of the strategy analysis are con-
ditional on the category structure it is applied to. Here, the issue lies in the fact that
for the easy stimuli the unidimensional strategy model would result in similar per-
formance to the optimum diagonal strategy model. Whereas for the hard stimuli, the
unidimensional strategy would score much lower than the optimum diagonal strategy.
This issue is exaggerated as the unidimensional strategy model has two parameters
whereas the diagonal general linear classifier strategy model has three. Therefore, if
the fit is similar between these two models the model-fitting procedure typically used
in this procedure will always favour the simpler (lower parameter) model. This biases
the analysis towards finding more unidimensional strategies in Block 1 of the initially
easy conditions than the initially hard conditions (for a more thorough discussion of
these issues see [Edmunds, Milton, & Wills| 2017; |Pitt, Myung, & Zhang) |2002). More
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generally, the sort of strategy modelling commonly included in COVIS-inspired papers
is likely to be inconclusive due to a range of methodological issues (Donkin, Newell,|
Kalish, Dunn, & Nosofsky, 2015; [Edmunds et al., 2017)). Such modelling should thus
should be interpreted with caution. We have included this kind of modelling in the
current paper because, despite its limitations, it plays a key role in the logic of most
COVIS-inspired experiments.

In summary, it is only in Blocks 2 and 4, where participants in both conditions see
the same stimuli, that the results of such analyses can straightforwardly be compared.
The results for Block 2 and 4 show a high probability that the optimum (diagonal)
decision-bound model is the best-fitting of those tested, supporting the applicability
of the COVIS account. However, the effect of experiment condition on these Block 2
and 4 probabilities is largely contrary to the predictions of COVIS.

Analysis of participants’ strategy reports

In research supporting the COVIS model, participants that are found to be using
the optimum (diagonal) strategy by the above model-based analyses are assumed
to be responding on the basis of implicit knowledge (Smith et al. [2015). However,
recent evidence has found that the proportion of participants identified by model-
based techniques as using “implicit” strategies varies depending on the details of the
analysis procedure used. For instance, if the range of rule-based strategies included
within the model-based analysis procedure is increased, the proportion of participants
classified as “implicit” (diagonal) responders goes down substantially
. Therefore, it seems wise to further investigate the assumption that an optimum
(diagonal) strategy as indicated by model-based analysis means that the participant
is responding on the basis of implicit knowledge.

To conduct this investigation, which follows an earlier investigation of a similar type
reported by Edmunds et al| (2015), we asked participants to describe the strategies
they used. This type of awareness task has also been previously conducted in other
investigations of implicit learning and, if anything, over-estimates the numbers of
implicit responders (e.g., [Konstantinidis & Shanks, 2014} Newell & Shanks, 2014}
Shanks & St. John| [1994; [Yeates, Jones, Wills, Aitken, & McLaren| 2013). As the
COVIS model assumes that the diagonal strategies are learned implicitly
, it predicts that the majority of participants in our experiments would not be
able to report any clear strategy (because model-based analysis identifies them as using
a diagonal strategy). Further, as participants are predicted to switch to the implicit
system faster in the hard-to-easy conditions, COVIS predicts that fewer participants
should be able to report a strategy in the hard-first conditions than in the easy-first
conditions.

An alternative possibility, not particularly consistent with COVIS, is that partici-
pants use strategies that combine information across both dimensions, but that these
strategies are not implicit. In other studies of classification behaviour, outside the
COVIS framework, participants commonly report these kinds of strategy (e.g.,
\Milton, Longmore, Hester, & Robinson), [2013)).

The strategy-report questionnaires that we administered in the current experiments
were independently coded by the first author (CERE) and a student volunteer (GW).
First, each verbal report was examined to determine whether the participant had
reported a clear categorisation strategy or not. Second, the available strategy descrip-
tions were sorted into the groups specified below — all descriptions were classifiable
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Table 2. Summary of the inter-rater reliability statistics for judging whether the participant had reported a
strategy, and for the type of strategy identified. Also listed are the number of participants in each condition of
each experiment that did not report a strategy.

Presence of Strategy = Type of Strategy no strategy N

Experiment
K -value K -value Easy Hard
p-v v first first
Experiment 1 0.84 < .001 0.49 < .001 1 2
Experiment 3 0.66 < .001 0.70 < .001 1 -
Experiment 4 1.00 < .001 0.89 < .001 2 3

into one of these groups. The inter-rater reliabilities for these initial codings are re-
ported in Table[2] Then, any discrepancies between raters were easily resolved through
discussion with reference to the strategy descriptions below. Across the three experi-
ments for which we had data (due to an oversight, no questionnaires were administered
in Experiment 2), the following types of strategy were identified:

Participants were classified as using a complex rule if they described a rule using
both stimulus dimensions in a complicated fashion. Example strategies include rule-
plus-exception strategies such as “upright stimuli were in Category A and flat stimuli
in Category B. However, if the stimulus was upright and had very few bars it was
in Category B” or sequential unidimensional rules such as “upright stimuli were in
Category A and flat stimuli were in Category B. For stimuli at 45 degrees, it was in
Category A if it had less than three bars and Category B if it had more than three
bars.”

Participants were classified as using a conjunction rule if they used both stimulus
dimensions and described categorising stimuli using a logical conjunction rule such as
“upright stimuli with lots of lines were in Category A, otherwise they were in Category
B.”

Participants were classified as using a two-dimensional rule if they described using
both stimulus dimensions but with descriptions that were too unclear to be assigned
to more specific categories.

Participants were classified as using a unidimensional rule if they described cate-
gorising stimuli based solely on either bar frequency or stimulus orientation.

In addition, a few participants described elements of the experimental setup, such
as which buttons to press, rather than their sorting strategy; these participants were
considered to have not reported a strategy.

We also created an overall similarity classification. If any participant had described
attempting to make the stimulus dimensions commensurable, such as “Stimuli for
which the line was longer than it was upright should be assigned to category A”, or
if they had said anything that could have reasonably been interpreted as a statement
that they based their classification on overall similarity, they would have been placed
in this group. In practice, across all three experiments, no participants made reports
of this type. Further, no participants reported using an implicit strategy, such as “I
went with my gut” or any similar or comparable statement.
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Table 3. The proportion of participants that reported using each strategy type.

Verbal reports
2D CJ Complex UD

Condition

Experiment 1
Easy-to-moderate 0.06 0.19 0.69 0.06
Hard-to-moderate 0.11 0.22 0.56 0.11

Fxperiment 3

Easy-to-all 0.12 0.18 0.47 0.24

Hard-to-all 0.05 0.45 0.50 0.00
FExperiment 4

Easy-to-hard 0.04 0.12 0.48 0.36

Hard-to-easy 0.00 0.18 0.68 0.14

Strategies: 2D = rule using both dimensions, CJ = Conjunction, UD = Uni-
dimensional.

The number of participants not reporting a strategy in each condition of each exper-
iment are displayed in Table 2] — as can be observed, the vast majority of participants
reported a classifiable sorting strategy. Further, as can be seen in Table [3] participants
reported a range of explicit rules, with complex rules being the most common in all
conditions of all experiments. This is inconsistent with COVIS, which, given the re-
sults of the model-based analyses, predicts that most participants should have learned
this category structure structure implicitly and thus, at least under normal definitions
of the term “implicit”, should not be able to report a strategy. Even if one considers
the two-dimensional rule-type, due to its vagueness, as a failed attempt to describe an
implicit strategy, it still remains the case that the vast majority of participants in all
conditions of all experiments in the current paper described a clearly-expressed rule
when asked how they had classified the stimuli.

Of course, it is possible to consider these kinds of subjective reports as epiphenom-
enal, and attribute classification behaviour to implicit processes that operate indepen-
dently of whatever mental process leads to these reports. Further research is required
to resolve this issue definitively, but the idea that information-integration category
structures are learned implicitly does not seem to be required by the currently avail-
able evidence.

General discussion

In the current paper, we examined how initial training difficulty impacts final cat-
egory learning performance. The literature highlighted two possibilities. First, the
well-established phenomenon of Transfer Along a Continuum (Lawrence, [1952)) leads
to the prediction that participants initially trained on the easy stimuli would perform
better at test than those initially trained on hard stimuli. In contrast,
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reported an experiment in which initial training on a hard discrimina-
tion resulted in better performance than initial training on an easy discrimination.
This result, approximately opposite to TAC, can be predicted by the COVIS model
of category learning. Specifically, Spiering and Ashby| argued that participants in the
easy-to-hard condition could perform very well on the easy stimuli by using a sub-
optimum unidimensional strategy and so would delay swapping from the Explicit Sys-
tem to the optimum Procedural System. In contrast, participants who were first shown
the difficult stimuli would swap to the optimum Procedural System much sooner as it
would be clear that rule-based approaches were not working.

We reported four experiments, all of which failed to support the conclusions of
Spiering and Ashby]| (2008). In Experiment 1, we re-examined the first two blocks of
Spiering and Ashby's experiment; the later parts (Blocks 3 and 4) of their experi-
ment were difficult to interpret due to the confound discussed in the Introduction. In
contrast to |Spiering and Ashby, we found substantial Bayesian evidence for the null
hypothesis: the type of initial training had no effect on final performance. In Experi-
ment 2, we changed the feedback and stimuli to rule out the possibility that they were
confusing the participants. Here, we again found evidence for the null hypothesis. In
Experiment 3, we examined the possibility that Experiments 1 and 2 were subject to
a ceiling effect. To do this, we imposed time pressure to reduce overall performance.
Once again, we failed to find a differential effect of initial training, but did find sub-
stantial evidence for the null hypothesis. Finally, in Experiment 4, we replicated the
entirety of Spiering and Ashby’s experiment. Here, in Block 2, we once again found
evidence for the null hypothesis. However, in Block 4, if we used a one-tailed test,
participants in the hard-to-easy training condition performed significantly better than
the participants in the easy-to-hard training condition. Bayesian analysis indicates
this result is equivocal (BF close to unity). Nevertheless, if one assumes the Block 4
effect is real, the evidence for the absence of an effect in Block 2 means this final result
is more compatible with TAC than with the approximately opposite conclusions of
[Spiering and Ashbyl

So, all in all, our results indicate that the effect found in |Spiering and Ashby| (2008))
was likely a false positive. In other words, a sufficient explanation for the difference
between their single study and the several reported here is an unfortunate initial
sample of the population on the part of Spiering and Ashby. This is a known hazard
of running a regular-sized study a single time.

Is there ever a difficult-first benefit in category learning?

A comprehensive answer to this question is beyond the scope of the current article,
or any other relatively brief empirical report. Nevertheless, it may be worth consider-
ing one previous publication, discussed at length by [Spiering and Ashbyl which also
appears to show a difficult-first benefit in training order in category learning
MacGregor, Bavelas, Mirlin, & Lam), |1988).

ILee et al.[s (1988)) paper differs from other work in this area in a number of important
respects. Perhaps most strikingly, use a cascade of participants to define
stimulus difficulty empirically. So, participant 1 (P1) gets the stimuli in a random
order. P2 gets the stimuli P1 got wrong first, followed by the stimuli P1 got right.
This then iterates to P3. found that, in general, P3 learns more quickly
than P2, who learns more quickly than P1. This is different to other experiments in
this area, which all use some experimenter-defined notion of stimulus difficulty (e.g.,
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distance from the optimal bound in stimulus space). It seems a reasonable conjecture
that the use of a participant cascade in this manner might lead to an ordering of stimuli
that was well correlated with an assessment of difficulty based on physical stimulus
properties. However, provide no information that could be used to confirm
or reject this conjecture.

Nevertheless, let us assume for a moment that the conjecture is correct. On this ba-

sis, the results of Lee et al.| (1988)) seem problematic for a COVIS account, because the
same difficult-first benefit is observed for both rule-defined category structures (Exp.
1, 4) and category structures likely to be information-integration from a COVIS per-
spective (e.g. male vs. female handwriting in Exp. 3). COVIS predicts a difficult-first
benefit should only be observed with an information-integration category structure
(Spiering & Ashbyl [2008)).
Spiering and Ashby]| (2008)) counter-argue that the presence of a difficult-first benefit
in a rule-based category in |Lee et al. (1988) is not a problem for COVIS, because
failed to include a transfer test (i.e., an equivalent to Blocks 2 and 4 in the
current experiments, where all participants are presented with the same set of stimuli
in a random order). To illustrate the problem this absence of a common transfer test
causes, imagine that the participant’s knowledge of the category structure is better at
the end of the experiment than the beginning, but this relationship between knowledge
and experience is unaffected by the order in which the items are presented. Under
these conditions, it can still be the case that the difficult-first participant scores better
overall. For example, when a participant has zero knowledge, the item difficulty is
irrelevant as all responses will be guesses, while when the participant has good but
imperfect knowledge their accuracy will be higher for easy than for difficult items. So,
putting difficult items first can lead to higher mean accuracy for reasons other than
promoting better learning.

In pointing this out, [Spiering and Ashby| (2008) make an insightful critique of [Lee]
. However, the critique potentially applies to all experiments in |Lee et al.
and hence also undermines the claim that there have been previous demonstrations of
a difficult-first benefit in an information-integration category structure. In summary,
Lee et al.| provides no compelling evidence that difficult-first training confers a benefit
to category learning.

[Spiering and Ashby| cite two further articles that they seem to imply support a
difficult-first benefit in procedures other than category learning (Ahissar & Hochstein,
11997; |Doane, Sohn, & Schreiber| 1999). However, the relation between these studies
and the others considered in the current article is remote at best, and they provide no
compelling reason to revise our assessment that the results of [Spiering and Ashby| are
most likely a false positive.

The role of counter-intuitive feedback

Other than simply being a case of a Type I error, another possible explanation for
why [Spiering and Ashby| (2008) found the result that they did is that they may have
failed to exclude mis-learners (their paper is unclear on this point). Mis-learners are
those participants whose performance was markedly different from chance, but in
the wrong direction, i.e. they scored around 10% rather than 90%. These participants
have obviously learned the features of the category structure, but mistook the response
key for each category structure. This is to be compared with non-learners who score
around chance (here 50%), who have not learned the features of the category structure.
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Mis-learning could also have been a problem for [Spiering and Ashbyfs experiment
because of their counter-intuitive choice of feedback signals: their high tone indicated
an incorrect response, whereas their low tone indicated a correct response. When we
used this feedback (Experiments 1 and 4) several participants mis-learned the category
structure. When we used more typical feedback signals, there were no mis-learners.

The mis-learning participants are important because the conclusions one draws from
the experiment depends on whether or not they are included in the analyses. In
three mis-learning participants were excluded from the easy-to-moderate
condition. If they are instead included, the pattern of results is similar to
and Ashby| (2008, although it fails to reach significance): hard initial training results
in better Block 2 performance than easy initial training. In three mis-
learning participants were removed from the hard-to-easy condition. In this case, any
difference between conditions in Block 4 disappears if these mis-learners are included.
Therefore, the impact of including mis-learners depends on which condition they were
in. This raises possibility that the original effect was due to several participants in the
easy-to-hard condition mis-learning the category structure and not being excluded.

Not only do these experiments indicate that the conclusions we can draw from
them are sensitive to mis-learners, they also highlight the importance of applying a
learning criterion to experiments within the COVIS literature. This observation is
consistent with other critiques of studies within the COVIS literature. For example,
Zeithamova and Maddox (2006) looked at the effect of concurrent load on category
learning. As predicted by the COVIS model, [Zeithamova and Maddox| found that
concurrent load negatively impacted rule-based but not information-integration cat-
egory learning. However, when Newell et al.| (2010) re-examined these experiments,
they found that the conclusions they could draw were dependent on the inclusion of
non-learners. When non-learners were included in these experiments, the data were
consistent with the COVIS model. However, when they were excluded the experiment
failed to find evidence of a dual-system model.

What does this mean for the COVIS model?

The current work adds to the growing literature that weakens the evidential support for
the COVIS model (such as|Carpenter, Wills, Benattayallah, & Milton, 2016} Edmunds|
et al., [2015; Newell et al., [2010; Nosofsky & Kruschkel 2002; Nosofsky, Stanton, & Zakil,
2005; [Stanton & Nosofskyl, [2007, 2013} [Zaki & Kleinschmidt| [2014). These studies have
found that much of the evidence argued to support the dual-process COVIS model is
amenable to alternative, often single-system, explanations. On the face of it, a single-
system, rule-based, account also seems sufficient to explain the current results. In these
studies, we asked participants to describe the strategy that they used to complete the
category-learning task. The vast majority of participants reported a specific rule-based
strategy.

An alternative, COVIS-consistent, interpretation of the participants’ strategy re-
ports is that they were failed attempts to verbalize an nonverbalizable implicit clas-
sification process. If one accepts this possibility, we think one must further ask what
evidence supports this interpretation over the apparently more straightforward possi-
bility that participants were reporting the rules they used?

There seem to be two sorts of answer here. The first is that the model-based analysis
employed in these studies reveals the underlying implicit process (by showing that
a diagonal strategy best fits the participants’ responses). We doubt this conclusion,
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mainly due to work conducted by ourselves and others, which has revealed a number of
methodological shortcomings in this type of model-based analysis (Donkin et al., 2015}
Edmunds et al., 2017). The second sort of answer is that there are many other papers
that support the COVIS theory, increasing the likelihood that the above COVIS-
inspired interpretation is the correct one here, too. However, as we have just noted,
such COVIS-supporting results as have been independently investigated turn out to
be less clear than they first appeared.

Relationship to TAC

Previous studies have found evidence of TAC in humans (Church et al.,|2013; [Hornsby|
& Love| 2014; Suret & McLaren, 2003), so why was it so difficult to find here? One
possibility consistent with the theoretical account given by |McLaren and Mackintosh|
is that the appearance of TAC in humans critically depends on the similarity of
the stimuli. In our experiments, compared to previous demonstrations, even the stimuli
most similar to each other appear obviously different, especially those in Category A
(see Figure . Therefore, perhaps we did not find TAC in our experiments because
the stimuli were not sufficiently similar to each other.

Another possible explanation might relate to the pre-experimental salience of the
stimulus dimensions, and their relevance to the category structure to be learned. The
stimuli used in previous demonstrations of TAC in humans, such as morphed faces
(Suret & McLaren| [2003), or mammograms (Hornsby & Lovel 2014]), have dimen-
sions of variation that may not be immediatley apparent to participants. In contrast,
in [Spiering and Ashby| (2008) and in the current experiments, there are two pre-
experimentally salient dimensions (bar frequency and orientation), neither of which
are individually good predictors of category membership. For such stimuli, partici-
pants might require quite extensive exposure to overcome the initial saliences of these
imperfectly-predictive stimulus dimensions, and focus on the critical discrimination
dimension (i.e. the minor diagonal in stimulus space), which provides the basis for a
TAC effect.

Conclusion

The current work challenges [Spiering and Ashbyfs claim, made on the basis of a single
experiment, that it is sometimes best to start training with the most difficult items.
All-in-all, the current work illustrates the dangers of making striking, novel, claims on
the basis of any one experiment.
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Appendix

Although the kind of model-based analysis described in this Appendix is ubiquitous in
the experimental COVIS literature, the types of strategy models included, and their
precise specifications, often vary between papers. In order to facilitate comparison
with the analysis presented in Spiering and Ashby]| (2008), here we use the same set of
models as employed in their paper.

The set of models considered by |Spiering and Ashby| (2008|) were of three main
types: rule-based, information-integration and random models. Within the COVIS
framework, the unidimensional and conjunction models are considered to represent ex-
plicit, rule-based strategies, while the diagonal general linear classifier (GLC) strategy
is considered to represent an implicit, information-integration strategy. The strategy
models used in this analysis were specified as follows:

The unidimensional models assume that the participant determines a criterion along
one of the stimulus dimensions, either orientation or length (or bar width, depending
on the stimulus type). They then make a decision about the category membership
of each stimulus by comparing the appropriate stimulus attribute with the criterion
value. As an example, for length, this corresponds to a rule of the type: “Assign to
Category A if the stimulus is long, or Category B if short.” The unidimensional models
have two parameters: the value of the criterion and the variance of internal (criterial
and perceptual) noise.

The conjunction model assumes that the participants make two judgements, one for
each stimulus dimension, and then combine these to make a judgement about category
membership. The conjunction rule in the current analysis was of the type: “Assign to
Category A if the stimulus is short and upright, otherwise assign to Category B.” The
conjunction model had three parameters: the two criterion values and internal noise.

The general linear classifier (GLC) model assumes that the decision boundary be-
tween the categories can be described by a straight line that can vary in gradient and
intercept. The unidimensional models are therefore special cases of the GLC model.
The GLC model has three parameters: the intercept and slope of the decision bound,
plus noise.

There are two random models that assume that participants are responding ran-
domly. The random model assumes that participants have no preference for either
category: it has no parameters. The random bias model assumes that participants
respond randomly but prefer one category over the other. It has one parameter that
represents the amount of bias.

For each participant, the fit of each of these models was calculated using the
Bayesian Information Criterion (BIC; [Schwarz, 1978)

BIC =rInN —2InL (1)

where 7 is the number of parameters in the model, N is the sample size and L is
the likelihood of the model given the data. The results from this analysis, which was
performed using the grt package in the R environment (Matsuki, |2014), are reported
in Table 4] Table |4 shows that a majority of participants in the test blocks (Block
2 and 4) of each condition in each experiment were found to be using the optimum
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diagonal strategy for the category structure.

Table 4. The proportion of participants that were assigned to each strategy according to the model-based
strategy analysis based on the responses from each block for each experiment.

Strategies (wBIC)

Condition
GLC CJ UD RND BIAS

Easy-to-moderate

Block 1 041 (0.76)  0.41 (0.98)  0.18 (0.80) - -

Block 2 0.82 (0.96) - 0.18 (0.74) - -
Hard-to-moderate

Block 1 0.60 (0.95) - 0.20 (0.81) 0.15 (0.59)  0.05 (0.63)

Block 2 0.65 (0.97)  0.10 (0.75) 0.15 (0.77)  0.10 (0.79) -
Fasy-to-moderate

Block 1 0.35 (0.80)  0.55 (0.98)  0.10 (0.81) - -

Block 2 1.00 (0.99) - - - -
Hard-to-moderate

Block 1 0.61 (0.98) 0.13 (0.65) 0.17 (0.64) 0.04 (0.87) 0.04 (0.31)

Block 2 1.00 (0.99) - - - -
Easy-to-all

Block 1 0.17 (0.84)  0.56 (0.93)  0.28 (0.75) - -

Block 2 0.89 (0.93) - 0.11 (0.60) - -
Hard-to-all

Block 1 0.60 (0.88) - 0.30 (0.79)  0.10 (0.73) -

Block 2 0.80 (0.94) - 0.15 (0.69)  0.05 (0.81) -
Easy-to-hard

Block 1 0.46 (0.91) 0.08 (0.64) 0.42 (0.74) 0.04 (0.89) -

Block 2 0.74 (0.98) 0.04 (0.41) 0.19 (0.78) 0.04 (0.89) -

Block 3 0.63 (0.97) - 0.30 (0.80) 0.04 (0.90) 0.04 (0.74)

Block 4 0.78 (0.96) - 0.19 (0.84) 0.04 (0.87) -
Hard-to-easy

Block 1 0.43 (0.88) - 0.29 (0.74) 0.21 (0.69) 0.07 (0.51)

Block 2 0.72 (0.95)  0.12 (0.70)  0.08 (0.72)  0.08 (0.73) -

Block 3 0.48 (0.91) 0.12 (0.62) 0.36 (0.55) 0.04 (0.60) -

Block 4 0.88 (0.99) - 0.08 (0.78)  0.04 (0.76) -

Strategies: GLC=General linear classifier, CJ=Conjunction, UD=Unidimensional, RND=Random.

Although not typically a part of the standard model-based strategy analysis used
in the COVIS literature (although see Roeder & Ashby, 2016, for a Bayes Factor ap-
proach), it is also informative to look at the performance of the best-fitting model
relative to the performance of the competing models. If the winning model performs
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much better than its competitors, i.e. it fits better to the data, we can be more con-
fident that this model provides the best description of the participant’s behaviour
from among the pre-specified alternatives. On the other hand, if the winning model
performs only slightly better than the alternatives, our confidence that the winning
model best describes the participant’s responses should be lower. There are several
cases where this might occur. For example, the participant may be swapping between
strategies, applying a single strategy inconsistently with lapses in attention or even
using a strategy not included within the set of models the analysis can select from
(Donkin et al., 2015). Therefore, it is important to investigate the fit of the strategy
models.

One principled way of evaluating the validity of the model-based analysis is by cal-
culating Schwarz weights (Wagenmakers & Farrell, [2004). Schwarz weights (w;(BIC))
are defined as the probability that model ¢ is best, in term of minimising the BIC,
given the data and the set of competing models. The average Schwarz weights for the
winning models are included in Table 4l From these, it is also possible to calculate
the normalised probability that the optimum diagonal strategy is preferred over rule-
based strategies (i.e. conjunction and unidimensional) for each participant. From the
Schwarz weights, the normalised probability that the diagonal strategy model is to be
preferred over the conjunction and unidimensional strategy models is calculated using:

ware(BIC)
were(BIC) + wey(BIC) + wyp(BIC)

(2)

where wgro(BIC), wey(BIC) and wyp(BIC) are the Schwarz weights for the
diagonal, conjunction and unidimensional strategy models respectively. These values
are reported for each experiment in Table
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