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Abstract 

Humans can spontaneously create rules that allow them to efficiently generalize what they have 

learned to novel situations. An enduring question is whether rule-based generalization is uniquely 

human or whether other animals can also abstract rules and apply them to novel situations. In 

recent years, there have been a number of high-profile claims that animals such as rats can learn 

rules. Most of those claims are quite weak because it is possible to demonstrate that simple 

associative systems (which do not learn rules) can account for the behavior in those tasks. Using a 

procedure that allows us to clearly distinguish feature-based from rule-based generalization (the 

Shanks-Darby procedure), we demonstrate that adult humans show rule-based generalization in this 

task, while generalization in rats and pigeons was based on featural overlap between stimuli.  In 

brief, when learning that a stimulus made of two components (“AB”) predicts a different outcome 

than its elements (“A” and “B”), people spontaneously abstract an opposites rule and apply it to new 

stimuli (e.g. knowing that “C” and “D” predict one outcome, they will predict that “CD” predicts the 

opposite outcome). Rats and pigeons show the reverse behavior – they generalize what they have 

learned, but on the basis of similarity (e.g. “CD” is similar to “C” and “D”, so the same outcome is 

predicted for the compound stimulus as for the components). Genuinely rule-based behavior is 

observed in humans, but not in rats and pigeons, in the current procedure.  
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Introduction 1 

Across the animal kingdom, organisms are capable of transferring what they have learned 2 

about a certain stimulus to novel stimuli. Generalizing newly acquired behavior is an important part 3 

of learning and allows the organism to respond quickly and adaptively.  In the current article, we 4 

consider two types of generalization. First, generalization might be based on the perceptual features 5 

of stimuli. For example, when a tone (stimulus A) is followed by a shock, conditioned fear will 6 

generalize to another tone (stimulus B) to the extent that A and B are perceptually similar. If 7 

generalization is based on the perceptual features of stimuli then it is said that generalization is 8 

feature-based. The second hypothesized type of generalization is rule-based. Humans can 9 

spontaneously create rules, which are not easily reducible to perceptual features, and which allow 10 

for efficient generalization of what is learned to novel situations (see below). The main question of 11 

this article is whether this rule-based route is uniquely human, as has been posited by some 12 

researchers (e.g. Penn et al. 2008). 13 

Feature-based generalization is easily captured by association-formation theories, which 14 

state that when a stimulus (e.g. stimulus A) is presented, a set of representational elements is 15 

activated. Those elements might encode distinct features of stimulus A such as its pitch, duration, 16 

intensity, spatial location and so on. When stimulus B is presented, some of the representational 17 

elements that are activated might be identical to those activated by stimulus A. The amount of 18 

generalization from stimulus A to stimulus B would then be a function of the number or proportion 19 

of elements A and B have in common (and/or the number or proportion of differences). The higher 20 

the featural overlap between A and B, the more generalization will be observed (e.g. Estes 1955; 21 

McLaren and Mackintosh 2000; 2002; Rescorla and Wagner 1972; Thorndike 1911; Tversky 1977). 22 

Other association-formation theories are based on variants of this general notion but incorporate 23 

additional assumptions about how exactly featural overlap is determined (e.g. Pearce 1994). In the 24 

current experiments, the latter theories make similar predictions to purely element-based accounts.  25 
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However, not all generalization outcomes observed in humans can be explained on the basis 26 

of featural similarity. Some instances of generalization seem instead to be rule-based and involving 27 

more complex cognitive mechanisms. In light of the enduring debate on the cognitive capacities of 28 

non-human animals, it has been suggested that rule-based generalization may be a uniquely human 29 

capacity (e.g. Penn et al. 2008). Hierarchies of cognitive ability have often been constructed on the 30 

basis of learning differences in abstract concepts and relational learning tasks (e.g. Wright 2010). 31 

However, as we will point out, much of this evidence has been inconclusive since viable associative 32 

explanations have not been ruled out convincingly.   33 

Researchers have investigated whether pigeons can create arbitrary categories based on 34 

common consequences and then generalize within such categories.  The general idea in those 35 

experiments is that, if arbitrary categories of perceptually different stimuli are formed based on a 36 

common outcome (Vaughan, 1988) or a common response (Wasserman et al. 1992) then changing 37 

the outcome or the required response for a subset of stimuli from one category, should generalize 38 

to the other stimuli of the same category. Both Vaughan and Wasserman have observed such a 39 

generalization effect. However, if it is assumed that during generalization training, the presentation 40 

of a stimulus activates the representation of the response, which becomes associated with the new 41 

response, then association-formation models can explain generalization on the basis of common 42 

consequences (Wills et al. 2006).  43 

A second line of research has focused on the ability to judge the relationship between two 44 

stimuli through an understanding of concepts such as same and different. It has been investigated 45 

whether pigeons (e.g. Blaisdell and Cook 2005; Katz and Wright 2006; Young and Wasserman 1997), 46 

rats (Wasserman et al. 2012), monkeys (e.g. Katz et al. 2002; Wright et al. 2003), and baboons (Fagot 47 

et al. 2001) can learn abstract concepts, such as same/different. Katz and colleagues have proposed 48 

several criteria that are important to rule out alternative explanations for abstract-concept learning 49 

(Katz et al. 2007). The procedure used by Blaisdell and Cook (2005) does not fulfil most criteria, e.g. 50 

due to questionable novelty of stimuli used during testing. Further, it seems that when multi-array 51 
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stimuli are used (as in Fagot et al. 2001 (baboons), Wasserman et al. 2012 (rats), and Young and 52 

Wasserman 1997 (pigeons)) a simple measure of item variability can explain the behavior of the 53 

animals. Katz and Wright themselves have obtained evidence for same/different concept learning in 54 

pigeons (Katz and Wright 2006), capuchin monkeys (Wright et al. 2003) and rhesus monkeys (Katz et 55 

al. 2002). However, it is possible that the pigeons in both the two-item same/different task (Katz and 56 

Wright 2006) and the matching-to-sample tasks (Bodily et al. 2008; Katz et al. 2008) performed the 57 

tasks by responding to recently-seen items, because the target was always presented first followed 58 

by the choice options.  59 

Rule-based generalization may also appear to underlie apparent analogical transfer, where 60 

the equivalence of the relationship between two sets of stimuli determines performance. Beckers 61 

and colleagues argued that rats can extract additivity rules and apply them to novel stimuli, shown as 62 

a modulation of the blocking effect by pretraining that provided information about the additivity of 63 

cues (Beckers et al. 2006). However, Haselgrove (2010) and Schmajuk and Kutlu (2010) suggested 64 

that the results of Beckers et al. (2006) can be accounted for by associative models (but see Guez and 65 

Stevenson 2011). Gillan and colleagues, reporting on the performance of the chimpanzee Sarah on 66 

both geometric and functional analogy problems, argued that she possessed the ability to reason on 67 

the basis of analogy (Gillan et al. 1981). In follow-up experiments, it was shown that Sarah could not 68 

only complete analogy problems, but could also construct analogies (Oden et al. 2001). However, as 69 

Penn et al. (2008) argue, replication and further examination of the underlying mechanisms is 70 

probably merited. Similar arguments apply to reports that an African Grey parrot, Alex, can name the 71 

attribute on which a pair of objects are the same or different (Pepperberg 1987). Thus, a few 72 

observations suggest the presence of relational learning in animals, but further research is required. 73 

Evidence from procedures developed to specifically investigate rule-based generalization 74 

seems to be mixed as well. While Preston (1986) did not find support for the generalization of a 75 

contextual rule, Murphy and colleagues (2008) did find that rats are able to generalize very basic 76 

sequential rules. On the other hand, several experiments point to the conclusion that pigeons are 77 
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very efficient rote learners, but fail to learn overarching rules or concepts (Mackintosh 1988). The 78 

criterial-attribute procedure (Kemler Nelson 1984) and procedures based on the COVIS 79 

(COmpetition between Verbal and Implicit Systems; Ashby et al. 1998) framework, both originally 80 

aimed at investigating rule-based versus feature-based categorization in humans, have subsequently 81 

been used in comparative studies. Humans show rule-based generalization in the criterial-attribute 82 

procedure, while feature-based responding was observed in macaques (Couchman et al. 2010). 83 

However, recent work indicates that these conclusions may be an artifact of the inadequate analysis 84 

techniques employed (Wills et al. accepted) and comparative studies using less confounded 85 

techniques have found comparable levels of feature-based generalization responding across 86 

pigeons, squirrels, and undergraduates (Wills et al. 2009). Similarly, in experiments based on the 87 

COVIS framework, it has been suggested that rule-based processes are available to humans (for a 88 

review see Ashby and Maddox, 2005), and macaques (Smith et al. 2010), but not to pigeons (Smith 89 

et al. 2011). However, the evidence in humans has been challenged (e.g. Newell et al. 2011) and a 90 

number of issues have been raised with the results of the pigeon study (Edmunds et al. 2015). To 91 

complicate matters further, both in the criterial-attribute procedures and in comparative studies 92 

within the COVIS framework, the purportedly “rule-based” and “feature-based” behaviors also differ 93 

in the number of stimulus dimensions relevant for the different routes (Edmunds et al. 2015). For 94 

rule-based categorization only one stimulus dimension is relevant, while for feature-based 95 

categorization multiple dimensions are relevant. This difference in dimensionality is problematic 96 

when considering the possibility that non-rule-based systems may have some mechanism of 97 

dimensional attention (e.g. Sutherland and Mackintosh 1971; Kruschke 1992). In other words, the 98 

seemingly rule-based responding in these procedures is explicable within an associative account 99 

under the assumption that participants attend to and learn about a subset of features (perhaps the 100 

most diagnostic features; Kruschke 1992). In consequence, those procedures do not allow us to 101 

clearly disentangle feature-based and rule-based mechanisms, so the controversy regarding the 102 

cognitive capacities of non-human animals remains.  103 
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In the human literature, there is one procedure for which nearly everyone on both sides of 104 

the debate agrees that rule-based generalization in this task is beyond simple associative accounts, 105 

the Shanks-Darby procedure. Shanks and Darby (1998), building on earlier work by Lachnit and 106 

Kimmel (1993), tested generalization after training on negative and positive patterning problems in 107 

human predictive learning. In negative patterning (NP) problems, stimuli A and B individually predict 108 

a certain outcome, but not when presented in compound (A+, B+, AB-). In positive patterning (PP) 109 

problems, a compound of two stimuli predicts an outcome, while the components do not (C-, D-, 110 

CD+). A general rule characterizes both patterning problems, namely compounds have the opposite 111 

outcome to their individual components (henceforth, an opposites rule). In the experiment of Shanks 112 

and Darby (1998), participants received training with complete positive and negative patterning 113 

problems, as well as incomplete positive and negative patterning problems. For example, in addition 114 

to training on A+, B+, AB-, C-, D-, and CD+, participants saw I+ and J+, but not IJ and saw KL-, but not 115 

K or L. During testing, participants were confronted with the stimuli omitted during training. If 116 

generalization were feature-based, participants should predict the outcome on IJ trials, but not on K 117 

and L trials. A subset of participants, however, did not predict the outcome on IJ trials, but did 118 

predict the outcome on K and L trials – a pattern consistent with the opposites rule present in the 119 

training patterns. Participants who reached a high level of accuracy during training showed a 120 

generalization pattern consistent with an opposites rule, while participants that performed less well 121 

on the trained patterns showed a generalization pattern consistent with featural overlap.  122 

Non-human animals have been shown to be capable of solving positive and negative 123 

patterning problems, even simultaneously (Dopson et al. 2011; Grand and Honey 2008; Harris et al. 124 

2008; North and Price 1959; Pearce and George 2002). However, mastery of positive and negative 125 

patterning problems per se can be explained on the basis of associative mechanisms. For example, 126 

according to some association-formation learning theories, compounds generate configural cues, 127 

which emerge from the unique combination of A and B, and which in turn activate certain elements 128 

that are unique for the compound and are not shared with the components (Spence 1952). Negative 129 
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patterning can then be solved by assuming that a configural cue, emerging from the combination of 130 

A and B, acquires strong inhibitory strength that cancels the combined excitatory strengths of the 131 

components A and B (Rescorla 1972). Thus, the evidence that animals can solve positive and 132 

negative patterning problems does not necessarily imply that they have also learned the underlying 133 

rule. Association-formation theories cannot, however, account for the rule-based generalization 134 

following successful simultaneous positive and negative patterning discrimination observed in 135 

humans. After all, when a new compound is presented for the first time, the configural cue has not 136 

yet gained any associative strength and therefore responding should depend entirely on 137 

generalization from the components to the compound (i.e. feature-based generalization).  138 

Despite the clear superiority of the Shanks and Darby procedure over other procedures to test for 139 

rule-based generalization, to the best of our knowledge there are no reports of this paradigm being 140 

utilized with non-human animals. There is one report, by Davidson and colleagues, where 141 

generalization of a negative patterning problem in rats was investigated (Davidson et al. 1993), but 142 

generalization after simultaneous acquisition of a positive and negative patterning problems has 143 

never been tested in non-humans. Apparently rule-based generalization after mere negative 144 

patterning discrimination learning can be explained associatively, because low responding to the 145 

generalization compound could be explained by assuming that the inhibitory strength gained by the 146 

compound during the training phases generalized to the test compounds (on the assumption that 147 

compounds are more similar to other compounds than to non-compound stimuli). Our aim in the 148 

present studies, therefore, was to investigate whether non-human animals, rats (Exp. 1A) and 149 

pigeons (Exp. 2A), would be able to demonstrate generalization of negative and positive patterning 150 

rules. The conditions faced by the animals in the two experiments described here were quite 151 

different from the conditions ordinarily present in human studies of generalization of patterning 152 

rules. To allow for a fair comparison between the capacities of humans on the one hand and rats and 153 

pigeons on the other hand, we conducted two analogue studies in humans that mimicked the 154 

conditions of the animal experiments as closely as possible (Exp. 1B and 2B). 155 
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Experiment 1A: Rats 156 

In Experiment 1A, two groups of rats were trained on a negative patterning (A+, B+, AB-) and 157 

a positive patterning (C-, D-, CD+) problem simultaneously, in an operant conditioning procedure. 158 

One group was then trained on an incomplete positive patterning problem (E-, F-), while the other 159 

group was trained on an incomplete negative patterning problem (E+, F+). The crucial test consisted 160 

out of presentations of the novel compound (EF). According to feature-based models of 161 

generalization, responding to the novel compound should be similar to responding to its 162 

components (thus high for those animals for which E and F was reinforced and low for those animals 163 

for which E and F were not reinforced). If, on the other hand, rats were able to detect and apply the 164 

opposites rule, the reverse pattern should be observed, that is higher responding to the EF 165 

compound if E and F were not reinforced and vice versa.  166 

Methods 167 

Subjects  168 

The subjects were 24 experimentally naïve female Sprague-Dawley rats obtained from 169 

Janvier (France), with body weights ranging between 256 and 303 g at the start of training. Subjects 170 

were randomly assigned to one of the two groups (Ns = 12). The animals were pair housed in 171 

standard cages in a colony room that was illuminated from 8:00 a.m. to 8:00 p.m. The animals were 172 

allowed free access to food pellets (Sniff Spezialdiäten GmbH, Soest, Germany), whereas water 173 

availability was limited to 20 min per day following a progressive deprivation schedule initiated 1 174 

week prior to the start of the study.  175 

Apparatus 176 

Eight standard operant chambers (34 cm length x 33 cm width x 33 cm height; Coulbourn 177 

Instruments, Leigh Valley, PA) housed in sound- and light-shielding cabinets (Coulbourn Instruments, 178 

Leigh Valley, PA) were used. All chambers had metal ceilings and side walls and clear Plexiglas front 179 

and back walls. The floor was made of stainless steel grids (0.5 cm in diameter). On one metal wall of 180 
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each chamber, there was an operant lever, and adjacent to it was a recess (4 cm x 3 cm) centred 2 181 

cm above the floor. A liquid dipper could deliver 0.04 cc of water into the bottom of the recess. Two 182 

speakers were mounted on each side wall. One was used to deliver a white noise at an intensity of 183 

approximately 73 dB(C). The second speaker was used to produce two tones, a low, pulsing tone 184 

(1000 Hz, 0.2 s on, 0.2 s off, ~79 dB(C)) or a high, complex tone (5000 Hz (0.6 s on, 0.1 s off) and 185 

7000 Hz (0.6 s off, 0.1 s on), ~70 dB(C)). A clicker was able to deliver a clicking sound, at an intensity 186 

of approximately 72 dB(C). A buzzer was used to deliver a buzzing sound, at an intensity of 187 

approximately 77 dB(C). The operation of a ventilation fan for each chamber contributed to the 188 

background level of noise that was approximately 65 dB(C). A light bulb, placed above the lever, was 189 

used to deliver a flashing light. Each chamber was illuminated by a dim house light placed on the 190 

opposite side of the light bulb. Those six different stimuli formed three sets of stimulus pairs: buzzer 191 

and flashing light (pair 1), low tone and house light turning off (pair 2) and high, complex tone and 192 

clicker (pair 3). Thus, two of the three compounds consisted of an auditory and a visual stimulus and 193 

one compound consisted of two auditory stimuli. All CSs were 30 s in duration. Water delivery was 194 

indicated by the onset of the white noise and the magazine light for 0.5 s. 195 

Procedure 196 

Before the beginning of the experiment, the three different stimulus pairs were assigned to 197 

the roles of AB, CD and EF in a counterbalanced fashion, yielding six counterbalancing types (see 198 

Table 1). Animals were run in three squads of eight rats balanced with respect to experimental 199 

condition and counterbalancing type. Each session was 62 min long. 200 

Shaping: Standard procedures were used to train the rats to press the lever in order to 201 

obtain water. A fixed-time 120-s (FT-120-s) schedule of noncontingent water delivery was operated 202 

while the levers were retracted at the start of training; shaping ended on a variable interval 20-s (VI-203 

20-s) schedule.  204 

Phase 1: From Days 1-27, rats received six presentations each of components A, B, C and D 205 

and twelve presentations each of compounds AB and CD (see Table 1). Stimuli A, B and the 206 
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compound CD were followed by 0.04 cc of water accessible for 5 s upon lever press. Lever pressing 207 

during the components C and D and the compound AB was not reinforced. For the first five days, 208 

reinforcement was delivered on a continuous reinforcement (CRF) schedule. For the next three days 209 

(days 6-8), reinforcement was delivered on a variable ratio (VR) 2 schedule. Thereafter, 210 

reinforcement was delivered on a VR 4 schedule. 211 

Trial order was semi-random so that no more than two trials of the same type and no more 212 

than four reinforced or unreinforced trials appeared in a row. The intertrial interval (ITI) ranged from 213 

35 to 55 s with an average of 45 s. For the first seven days of this phase the lever was retracted 214 

during the ITI. After those seven days, the lever was present throughout the whole session. 215 

Phase 2: From Days 28 to 36, rats continued to be trained on the negative and positive 216 

patterning problems, but additionally received eight presentations each of the generalization stimuli 217 

E and F. For the PP transfer group, lever pressing during presentation of the components E and F 218 

was not reinforced, while pressing to those components was reinforced for the NP transfer group. 219 

The number of A, B, C and D component trials was not equal between groups (see Table 1) in order 220 

to keep outcome frequency at 50% overall as well as for presentations of components (20 221 

reinforced, 20 non-reinforced) and compounds (4 reinforced, 4 non-reinforced). 222 

Phase 3 (test phase): On day 37, during the first part of the test phase all animals received 223 

presentations of the complete negative and positive patterns and the incomplete patterning stimuli 224 

as before. In the second part of this phase, the EF compound was presented twice, without 225 

reinforcement. In the third part, four unreinforced presentations of E and F were intermixed with 226 

another four unreinforced presentations of EF (see Table 1). This session lasted for 40 min. 227 
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Data archiving 228 

The session-level raw data are archived at www.willslab.co.uk/kulmaes1 with md5 229 

checksum a4be13dfaa3476942874a930805a91981. 230 

Results 231 

For the first phase, the mean number of responses (lever presses) made during the 232 

reinforced components A and B, the unreinforced components C and D, the reinforced compound 233 

CD, and unreinforced compound AB, are shown in Fig. 1. As can be seen, the mean number of 234 

responses made during the reinforced components and compound increased, while the number of 235 

responses made during the unreinforced components and compound decreased. Repeated 236 

measures Analysis of Variance (ANOVA) with Session and Reinforcement (reinforced versus 237 

unreinforced) as within-subject factors revealed an effect of Reinforcement, F(1, 23) = 220.30, p < 238 

0.01, η2
partial = 0.91, indicating an overall higher response rate to reinforced than unreinforced cues, a 239 

linear trend over sessions, F(1, 23) = 91.42, p < 0.01, η2
partial = 0.80, indicating an increasing response 240 

rate over training and an interaction between Reinforcement and linear trend over sessions, F(1,23) 241 

= 220.99, p < 0.01, η2
partial = 0.91, indicating an increase in discrimination between the reinforced and 242 

unreinforced stimuli over sessions. Follow-up analyses revealed that the response rate to the 243 

reinforced stimuli was higher than the response rate to the unreinforced stimuli from the fourth day 244 

of discrimination training onward, t(23) = 8.55, p < 0.01, 95% confidence interval (CI) [1.21-1.99]. To 245 

investigate the apparent difference in speed of discrimination learning between NP and PP, an 246 

ANOVA with Session and Pattern (NP and PP) as within-subject factors was conducted on the 247 

difference between CS+ and CS- for each pattern. This analysis revealed an overall effect of Pattern, 248 

F(1, 23) = 12.62, p < 0.01, η2
partial = 0.35, a linear trend over sessions, F(1, 23) = 220.99, p < 0.01, 249 

η2
partial = 0.91, and an interaction between Pattern and linear trend over session, F(1, 23) = 6.79, p < 250 

                                                           
1 Publication of an MD5 checksum allows the reader to independently confirm that the raw data in the 

archive is unchanged. 
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0.05, η2
partial = 0.23. These results indicate that the PP problem was learned more readily than the NP 251 

problem, as in previous reports (e.g. Harris et al. 2008; Harris et al. 2009). From the eighth day 252 

onwards, the lever was presented during the ITI and the number of responses during a 30 s 253 

prestimulus period was recorded. As can be seen in Figure 1, the prestimulus response rate 254 

decreased over days.  255 

During the second phase, the lever was available throughout the whole session and an 256 

elevation score was calculated for each stimulus as the mean number of responses during each 257 

component or compound stimulus presentation minus the mean number of responses during the 30 258 

s prestimulus interval for that specific stimulus. Responding to components E and F was higher in 259 

group NP transfer than in group PP transfer, as shown in Fig. 2, top panel. Since this difference was 260 

already apparent on the first day, we also examined responding on each trial of the first day (Fig. 2, 261 

bottom panel). Responding increased over trials for the NP transfer group, while responding 262 

decreased in the PP transfer group. An ANOVA with trial as within-subjects factor and group as 263 

between subject factor, revealed an interaction between Group and linear trend over trials, F(1,22) 264 

= 8.87, p < 0.01, η2
partial = 0.29. Planned comparisons revealed a linear trend over trials in both 265 

groups, although only marginally significant for group NP transfer (NP transfer: F(1,11) = 3.91, p = 266 

0.07, η2
partial = 0.26; PP transfer: F(1,11) = 7.93, p < 0.05, η2

partial = 0.42), suggesting that rats in the NP 267 

transfer group learned to respond to the new components and rats in the PP transfer group learned 268 

to not respond to those components. The average number of all 30 s preCS responses on this day 269 

was 0.35. 270 

During the actual test (Phase 3, parts 2 and 3), the EF compound was presented twice, 271 

unreinforced, followed by four unreinforced presentations of the components E and F, intermixed 272 

with four unreinforced presentations of the compound EF. The problem here is that extinction from 273 

the first two unreinforced presentations of EF might generalize to E and F (generalization of 274 

extinction effect), so that the response to E and F would be low. A lower response to E and F 275 

compared to EF might also be due to a higher chance to forget the E+/F+ training for E/F test trials 276 
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than EF test trials. The crucial comparison is, therefore, the between groups difference in elevation 277 

score for the first presentation of EF. An independent t-test revealed a higher elevation score for EF 278 

in the NP transfer group than in the PP transfer group t(11.06) = 10.82, p < 0.01, 95% CI [26.82-279 

40.51] (see Fig. 3). The average number of all 30 s preCS responses on this day was 0.54. 280 

Finally, we determined the apparent generalization strategy (feature- versus rule-based) for 281 

each individual rat. For animals in the PP transfer group a standard deviation (SD) was calculated 282 

based on the responses to the non-reinforced trials of the first part of Phase 3 (2 AB-, 1 C-, 1 D-, 1 E-, 283 

1 F-). Rats in this group were classified as rule-based if the number of responses to the first 284 

presentation of EF was at least one SD above the mean number of responses to the first 285 

presentations of E and F. For animals in the NP transfer group a standard deviation (SD) was 286 

calculated based on the responses to the reinforced trials of the first part of Phase 3 (1 A+, 1 B+, 2 287 

CD+, 1 E+, 1 F+). Rats in the NP transfer group were classified as rule-based if the number of 288 

responses to the first presentation of EF was at least one SD below the mean number of responses 289 

to the first presentations of E and F. Using this criterion, none of the rats were classified as rule-290 

based generalizers. 291 

Discussion 292 

In this experiment, rats were trained on a positive and a negative patterning discrimination 293 

simultaneously. After four days of training, rats showed behavior consistent with having learned 294 

both the positive and negative patterning discriminations, which is considerably faster than 295 

published reports using purely Pavlovian training methods (Bussey et al. 2000; Harris et al. 2008; 296 

Harris et al. 2009). However, the use of an operant procedure in which the reinforcer is administered 297 

during the trial entails a potential problem. The first reinforcer delivered during a reinforced trial 298 

could serve as a cue for the availability of food during the remainder of the trial. This would lead to a 299 

high response rate on reinforced trials compared to unreinforced trials irrespective of any 300 

discrimination learning between the different stimuli (McDonald et al. 1997). There are two reasons 301 

for assuming that the rats did not rely solely on the presentation of the reinforcer to guide their 302 
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behavior. Given that the reinforcer was delivered on a VR 4 schedule, on average four responses 303 

would be necessary to determine whether the trial would be reinforced or not. However, response 304 

rates to the unreinforced stimuli dropped below two by the end of Phase 1 (see Figure 1). Moreover, 305 

high response rates to the EF compound were observed in the rats from the NP transfer group in the 306 

test phase, which was conducted under extinction (see Figure 3), so that reinforcement could not 307 

serve as a cue for responding.  308 

Despite the fact that the rats learned to solve the patterning problems quickly and reliably, 309 

generalization to the novel EF compound seemed to be fully feature-based. That is, elevation scores 310 

to the compound were higher in the NP transfer group than the PP transfer group. This is in sharp 311 

contrast with the human literature, where it has been shown that around 50% of participants who 312 

learn to solve patterning problems generalize according to the opposites rule (Wills et al. 2011; see 313 

further analysis reported in Wills 2014).  314 

A number of reasons might explain the discrepancy between the present results and the 315 

typical results in humans. The combination of auditory and visual cues might have made it more 316 

difficult for the rats to discern the underlying rule. Moreover, it might also limit generalization from 317 

an auditory-visual compound to an auditory-auditory compound. Also, by the time the 318 

generalization test was conducted, rats might have been overtrained on the patterning problems, 319 

which could have influenced retention of the rule. Another important note is that rats were trained 320 

on only one example each of positive and negative patterning, while humans are typically trained on 321 

at least two problems of each kind (Shanks and Darby 1998; Wills et al. 2011).  322 

Experiment 1B: Humans  323 

In Experiment 1A, rats did not demonstrate rule-based generalization after training on one 324 

negative and one positive patterning problem. In the rats’ defence, it is not clear from the human 325 

literature whether humans would demonstrate rule-based generalization under the conditions faced 326 

by the rats in Experiment 1A. Therefore, we conducted a very similar study with human participants. 327 
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As in the rat study, an operant procedure using both auditory and visual stimuli was employed to 328 

train the participants on a negative and a positive pattern as well as an incomplete negative or 329 

positive pattern. Because humans learn this kind of discrimination much more quickly than rats, the 330 

procedure was compressed into a single session. 331 

Methods 332 

Participants, apparatus and stimuli 333 

Participants were 48 volunteers (8 male, mean age = 20.5 years) from KU Leuven. They 334 

received either partial course credit for an undergraduate psychology course or 4 euros for their 335 

participation in the experiment. Participants were tested individually in a quiet testing room using a 336 

PC connected to a 19-inch monitor and headphones and running Affect software (Spruyt et al. 2010). 337 

Four edited non-recognizable Microsoft Windows sounds served as auditory stimuli and two colored 338 

squares (blue and green) served as visual stimuli. In order to mimic the rat study, stimuli were paired 339 

such that two of the three compounds consisted of an auditory and a visual stimulus and one 340 

compound consisted of two auditory stimuli. Assignment of stimulus pairs to the roles of AB, CD and 341 

EF was counterbalanced within groups.  342 

Procedure 343 

The procedure of this experiment was developed through multiple pilot studies. On-screen 344 

instructions informed the participants that they had to press the space bar multiple times in order to 345 

gain golden coins and that the sounds they would hear and the images they would see, would 346 

determine whether responding was rewarded or not. To impose a response cost, they were 347 

informed that a coin would be subtracted after every twentieth response. This information was 348 

repeated orally by the experimenter, after which a practice phase was initiated. At the start of the 349 

practice phase, the participants were informed that a butterfly was an example of an image that 350 

would lead to golden coins if they pressed the space bar and that the flower was an example of an 351 

image that would not lead to coins. A translation of the instructions given to the participants can be 352 

found in Online Resource 1 section I. 353 
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Throughout the experiment, the screen was black with a treasure chest in the right corner of 354 

the screen. The participant’s score was depicted on the chest in green. Below their score the text 355 

“best score: 341” was shown in order to motivate the participants. The value of this score was set at 356 

the beginning of the experiment and did not change during the experiment. The value of the score 357 

was chosen in such a way that it would be difficult, but not impossible to exceed it. After every 358 

twentieth response “-1” appeared in the treasure chest in red and one point was subtracted from 359 

the participant’s total score. After a variable number of correct responses (i.e. bar presses during the 360 

CS+) a golden coin appeared on the screen and the participant’s score was increased by one point. 361 

Each stimulus was presented for 8 s with an ITI of 2 s. 362 

During the practice phase, the butterfly and the flower were each presented 5 times, in a 363 

random order. During the first presentation of the butterfly, bar pressing was reinforced on a VR 3 364 

schedule. The ratio was increased to 5 for the next presentation and was further increased to a VR 7 365 

for the last three presentations. After the practice phase, the participants were informed that the 366 

experiment would start and they were asked to put the headphones on.  367 

The design of the experiment is depicted in Table 2. In the first phase, participants were 368 

trained on a positive and a negative patterning discrimination, simultaneously. In the first part of 369 

Phase 1, participants received four presentations each of components A, B, C and D, and eight 370 

presentations each of compounds AB and CD. Bar presses made during the components A and B and 371 

the compound CD were reinforced on a VR 3 schedule, whereas bar pressing during the components 372 

C and D and the AB compound were not reinforced. In the second part of Phase 1, participants 373 

received three presentations each of the components and six presentations each of the compounds; 374 

the ratio schedule was increased to a VR 5. During the last part of Phase 1, participants received nine 375 

presentations each of the components and eighteen presentations each of the compounds, while 376 

the ratio schedule was increased to a VR 7. In total participants received sixteen presentations of 377 

each component and thirty-two presentations of each compound in the first phase. Trial order was 378 
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semi-random so that no more than two trials of the same type and no more than four reinforced or 379 

unreinforced trials appeared in a row.  380 

In the second phase the generalization stimuli E and F were introduced while training on the 381 

negative and positive pattern was continued. As in the rat study, the number of A, B, C and D 382 

component trials was not equal between groups (see Table 2) in order to keep outcome frequency 383 

at 50% overall and for presentations of components (19 reinforced, 19 non-reinforced) and 384 

compounds (3 reinforced, 3 non-reinforced). 385 

After the second phase new instructions appeared on the screen. The participants were now 386 

informed that they would no longer receive any feedback, however, the computer would keep track 387 

of their scores and they would see their total score at the end of the experiment. As with the rat 388 

study, participants first received trials containing previously encountered stimuli (see Table 2). In the 389 

second part, participants first received two presentations of the new compound EF, followed by 390 

another four presentations of EF intermixed with four presentations each of E and F.                   391 

Data archiving 392 

The trial-level raw data are archived at www.willslab.co.uk/kulmaes2 with md5 checksum 393 

931a93e8e924c7d5116043680b30cd65.  394 

Results 395 

To check participants’ mastery of the trained patterning discriminations, we analysed the 396 

results of the last part of the first phase (the VR 7 part). The mean number of responses made during 397 

presentations of the reinforced components A and B, the unreinforced components C and D, the 398 

unreinforced compound AB and the reinforced compound CD are shown in Figure 4. As can be seen, 399 

the mean number of responses during the reinforced components and compound is higher than the 400 

mean number of responses during the unreinforced components and compound. A t-test confirmed 401 

that responding to the reinforced stimuli (mean: 24.67) was higher than responding to the 402 

unreinforced stimuli (mean: 2.19), t (47) = 22.29, p < 0.01, 95% CI [20.45-24.50].  403 
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During the second phase, responding to the new components E and F was higher in the NP 404 

transfer group than the PP transfer group (see Fig. 5, left panel), t(23.60) = 10.92, p < 0.01, 95% CI 405 

[17.57-25.77]. 406 

For the crucial test, we compared responding during the first presentation of EF between 407 

groups, as with the rat study. An independent t-test revealed higher responding to EF in the NP 408 

transfer group than in the PP transfer group (see Fig. 5, right panel), t(42.67) = 4.00, p < 0.01, 95% CI 409 

[5.50-16.67], suggesting feature-based generalization at the group level. 410 

We also analysed individual generalization strategies using the same criterion as for the rats. 411 

For participants in the PP transfer group a SD was calculated based on the responses to the non-412 

reinforced trials of the first part of Phase 3 (2 AB-, 1 C-, 1 D-, 1 E-, 1 F-). Participants in this group 413 

were classified as rule-based if the number of responses to the first presentation of EF was at least 414 

one SD above the mean number of responses to the first presentations of E and F. For participants in 415 

the NP transfer group a SD was calculated based on the responses to the reinforced trials of the first 416 

part of Phase 3 (1 A+, 1 B+, 2 CD+, 1 E+, 1 F+). Participants in the NP transfer group were classified as 417 

rule-based if the number of responses to the first presentation of EF was at least one SD below the 418 

mean number of responses to the first presentations of E and F. Using this criterion, thirteen 419 

participants from each group were categorized as rule-based.  420 

As stated previously, none of the rats showed rule-based generalization, while 26 out of 48 421 

human participants did. On a chi-square contingency test, the human participants were significantly 422 

more likely to show rule-based generalization than the rats, χ2 (1) = 20.35, p < 0.01. 423 

Discussion 424 

The participants in this experiment were trained on one positive and one negative pattering 425 

problem using different auditory and visual stimuli in an operant conditioning paradigm. Participants 426 

in the PP transfer group were also trained on an incomplete positive patterning problem and 427 

participants in the NP transfer group were also trained on an incomplete negative patterning 428 

problem. During the generalization test, two patterns seemed to emerge; some participants 429 
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generalized based on featural overlap between the stimuli, while other participants generalized 430 

based on the opposites rule. To our knowledge, this is the first experiment to indicate that humans 431 

are capable of detecting the opposites rule in an operant conditioning procedure when trained on 432 

only one patterning problem of each kind and even when different stimulus modalities are used. The 433 

conditions faced by the participants in this experiment were rather similar to the conditions faced by 434 

the rats in Exp. 1A. In conclusion then, rule-learning appears more readily in humans than in rats, at 435 

least in the current procedure.  436 

Experiment 2A: Pigeons 437 

In Experiment 2A, pigeons were trained on two symmetrical patterning problems and four 438 

incomplete patterning problems in a go-left/ go-right procedure using visual stimuli. During test, the 439 

pigeons were confronted with the novel compounds and the novel components. According to 440 

feature-based models of generalization, if the correct response for the components was the left 441 

response, then pigeons should also choose left when presented with the compound. If the reverse 442 

pattern should be observed, that is, pigeons choose left for the compound when the correct 443 

response to the components was right, this would indicate rule-based generalization.  444 

Methods 445 

Subjects 446 

The subjects were seven pigeons (Columba livia). They were housed in an indoor aviary, and 447 

were transferred to individual cages on days when they were to be tested. After testing they were 448 

weighed and given any supplementary feeding needed to maintain their weight at around 90% of 449 

free feeding levels. On non-testing days the pigeons remained in the aviary and were given a limited 450 

food supply there.  451 

Apparatus 452 

The experiment used seven identical operant conditioning chambers, measuring 453 

710×505×435 mm. One long wall of each box included a 15-inch touch monitor, which consisted of 454 
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an infra-red touchscreen mounted in front of an LED computer display screen (ELO Touchsystems Inc 455 

Intellitouch, model 1547L). The bottom edge of the screen was 120 mm above the grid floor of the 456 

chamber. Two 2.8 W white houselights were mounted in the top corners of the operant panel above 457 

and to either side of the screen. Two recesses, each measuring 60×50 mm and giving access to grain 458 

hoppers when the hopper solenoids were activated, were located directly below the houselights and 459 

40 mm above the grid floor of the chamber. The hoppers were illuminated by a 2.8 W white light 460 

when activated, and contained a 2:1 mixture of hemp seed and health conditioner, a highly 461 

preferred food for pigeons. White noise was played into the box from a loudspeaker located 462 

centrally below the touchscreen. The interior of the box could be observed by a video camera 463 

mounted on the side of the chamber. The chambers were housed in a darkened room together with 464 

other similar apparatus. Stimulus presentation and reinforcement contingencies for all chambers 465 

were controlled, and data recorded, by a customized PC (supplied by Quadvision Ltd., Dorset, UK) 466 

located in an adjacent laboratory area, with software written in Visual Basic using the Whisker 467 

control system (Cardinal and Aitken 2010).  468 

Stimuli 469 

The stimuli comprised six pairs of Chinese characters, shown in Fig. 6. Each individual 470 

character was approximately 60 mm square, and was displayed in white on a black background. For 471 

each bird, the character pairs were arbitrarily assigned to the six compound stimuli of the 472 

experimental design (AB, CD, EF, GH, IJ, and KL, see Table 3). When presenting the component 473 

stimuli (e.g. A), a single appropriate character was shown. The two compound stimuli within any 474 

given patterning problem (e.g. AB and BA) differed only in the left-right placement of the two 475 

characters in the pair. 476 

Procedure 477 

Standard procedures were used to train the pigeons to take food from either food hopper 478 

when it was operated. The pigeons were then trained to peck a 30 mm diameter white circle located 479 
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to the left of the touchscreen to obtain grain from the left hopper, and to peck a 30 mm diameter 480 

white circle to the right of the touchscreen to obtain grain from the right hopper.  481 

After this pre-training, birds were exposed to the Phase 1 go-left, go-right, training schedule 482 

(Table 3). Response 1 was left and Response 2 was right for four birds (At, Ax, Mo, Ta); for the other 483 

three birds (Bw, Fe, He) the assignments were reversed. For example, for bird At responses to the 484 

left were reinforced in the presence of stimulus A alone, and in the presence of stimulus B alone, 485 

while responses to the right were reinforced in the presence of stimulus compound AB and in the 486 

presence of stimulus compound BA.  487 

At the beginning of each trial, a 30 mm diameter white circle was presented centrally on the 488 

touchscreen. Two pecks on this circle replaced it with the target (e.g. AB), again centrally presented 489 

on the touchscreen. Two pecks to the centrally-presented target replaced it with two copies of the 490 

stimulus; one copy was positioned on the left of the touchscreen, the other on the right. One of 491 

those was the reinforced copy, the other one was the unreinforced copy. 492 

Pecks anywhere in a region centered around the reinforced copy, 200 pixels square for 493 

single-character stimuli or 400 x 200 pixels for two-character stimuli, were reinforced on a fixed 494 

interval 3 s schedule with 2.5 s access to a 2:1 mixture of hemp seed and conditioner from the 495 

hopper nearer to the reinforced copy. Pecks to the other copy had no scheduled consequences. The 496 

trial was recorded as having a correct response if the first peck was to the reinforced copy. 497 

Reinforcement was followed by an ITI of between 3 and 6 s. Sessions consisted of 60 trials, with each 498 

trial type presented repeatedly and in random order. There were between two and five sessions per 499 

week. 500 

Phase 1 training continued for each pigeon until it reached a criterion of 80% correct in two 501 

consecutive sessions. Subsequent phases proceeded in a similar way, except that the trial types 502 

were of course different (see Table 3), and session length also varied slightly between phases to 503 

enable equal use of the different numbers of stimuli involved (Phases 2–4: 64 trials; Phase 5; 72 504 

trials). Some birds failed to meet the learning criterion in some phases; for animal welfare reasons, 505 
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these birds were progressed to the next phase after they reached a maximum number of sessions 506 

(at least 50 sessions, see Results for details).  507 

Data archiving 508 

The trial-level raw data are archived at www.willslab.co.uk/exe3/ with md5 checksum 509 

af9a4c6f3703f180c5db9bd51019f549. 510 

Results and Discussion 511 

In Phase 1, learning of the patterning discrimination was generally rapid, with all but one 512 

bird taking between four and seven sessions to reach criterion (the remaining bird, Ta, reached 513 

criterion in 27 sessions). On transfer to the second patterning discrimination in Phase 2, all seven 514 

birds were below 50% accuracy in the first session; this is consistent with the idea that the birds 515 

learned some kind of brightness or magnitude discrimination in Phase 1.  516 

Learning of the Phase 2 patterning discrimination was slower than in Phase 1, with five birds 517 

taking between seven and fifteen sessions to reach criterion (At: 24 sessions; Ta: 37 sessions). Bird 518 

At died shortly after the end of Phase 2.  519 

Phase 3 combined the patterning discriminations of Phases 1 and 2. Of the remaining six 520 

birds, three met criterion, taking 7 (Mo), 10 (Fe) and 43 (He) sessions to do so. One bird (Bw) 521 

progressed to Phase 4 after 22 sessions, having missed the criterion by a narrow margin (accuracies 522 

of 0.84 and 0.78 on the final two sessions). The remaining two birds did not reach criterion in the 60 523 

sessions available, but their accuracy in the last two sessions was reasonably good (Ax: 0.67, 0.70; 524 

Ta: 0.75, 0.84). Accuracy across these last two sessions was significantly above chance for each of 525 

the six birds, min. χ2 = 18.00, p < .01. 526 

Phase 4 added further compound and component trial types to Phase 3, but no further 527 

complete patterning problems (see Table 3), in preparation for the critical generalization tests at the 528 

beginning of Phase 5. Learning in Phase 4 was slow, with only one bird (Fe) reaching criterion within 529 

the 50–70 sessions available. Nevertheless, the birds’ accuracy in the last two sessions was 530 
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reasonably good (Ax: 0.67, 0.72; Bw: 0.72, 0.64; He: 0.81, 0.77; Mo: 0.70, 0.89; Ta: 0.77, 0.64), and 531 

was significantly above chance for each of the six birds, min. χ2 = 16.53, p < .01. 532 

Phase 5 completed the patterns of Phase 4 by the addition of novel test items. Accuracy 533 

exceeding 0.5 on these novel test items indicates rule-based generalization, while accuracy below 534 

0.5 indicates feature-based generalization. As shown in Table 4, all six birds generalized on the basis 535 

of featural overlap rather than on the basis of the underlying rule (p=0.03 on a two-tailed binomial 536 

test). All birds were above chance on the familiar stimuli (i.e. those also presented in Phase 4, see 537 

Table 4). Five of the six birds received 45–50 further sessions of training on Phase 5 (Ta received 10 538 

further sessions). No bird reached criterion in Phase 5 in the time available. 539 

In summary, the pigeons found this task difficult but nevertheless demonstrated consistent 540 

patterns of responding to the novel test items. For all pigeons, generalization was feature-based, 541 

rather than rule-based.  542 

Experiment 2B: Humans 543 

Experiment 2B was, as closely as was practical, a human analog of Experiment2A. Because 544 

humans learn this kind of discrimination much more quickly than pigeons, the procedure was 545 

compressed into a single session. A few changes to the procedure were made to facilitate this 546 

compression, see below. However, the phase structure (Table 3) and the stimuli were the same as in 547 

Experiment 2A, and the trial structure approximated that of Experiment 2A, modified to employ 548 

secondary reinforcement. 549 

Methods 550 

Participants, apparatus, and stimuli 551 

Twenty nine human adults (8 male, 19 female, 2 not recorded) were recruited through the 552 

School of Psychology’s participant panel at Plymouth University. Each was paid 8 GBP. The 553 

experiment was conducted using the E-prime package running on standard PCs with 19-inch 554 

monitors and standard keyboards. The stimuli were the same Chinese characters as used in 555 
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Experiment 2A (see Fig. 6). Each participant experienced one of six different allocations of Chinese 556 

character pairs to compound stimuli, with allocations determined via a Latin Square design.  557 

Procedure 558 

The phase structure was the same as in Experiment 2A (see Table 3). For 15 participants, 559 

Response 1 was left and Response 2 was right; for the other 14 participants, the assignments were 560 

reversed. All participants were asked if they were able to read Chinese characters (none were). They 561 

then received some basic instructions that described the structure of a single trial, but which did not 562 

reveal the phase structure, and did not mention the word “rule” or any synonym thereof. The full 563 

instructions given to the participants can be found in Online Resource 1 section II. 564 

Each participant was tested in a single session, with one block for the humans corresponding 565 

to one session for the pigeons. Humans were encouraged to rest briefly between blocks, and had to 566 

press a key in order to proceed to the next block. Transitions between phases were not explicitly 567 

signaled. The learning criterion in Phases 1 – 3 was 0.80, the same as for the pigeons. In Phase 4, the 568 

criterion was lowered to 0.75, which was the mean last-block performance of the pigeons in Phase 569 

4. The following changes, relative to the pigeon procedure, were made to keep the expected session 570 

length for humans below one hour: (1) humans had to pass the learning criterion for one block, 571 

rather than two, in order to proceed to the next phase, (2) humans progressed to the next phase 572 

after 10 blocks if they had not met the criterion during that time (instead of 50+ sessions for the 573 

pigeons), (3) humans completed a single block of Phase 5. 574 

At the beginning of each trial, a small fixation dot was presented in the center of the screen. 575 

Pressing the spacebar replaced the fixation dot with the stimulus (e.g. AB), again centrally 576 

presented. Pressing the spacebar again caused the centrally-presented stimulus to be replaced by 577 

two copies of the stimulus; one copy was positioned on the left of the screen, the other on the right. 578 

Participants pressed the “C” key to select the left-hand copy, and the “M” key to select the right-579 

hand copy. If the participant’s response was correct, the stimuli were replaced by a centrally-located 580 
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yellow smiley face. Incorrect responses were followed by a blue sad face. 1000 ms after the 581 

participant’s response, the trial ended.  582 

Data archiving 583 

The trial-level raw data are archived at www.willslab.co.uk/plym8/ with md5 checksum 584 

33d885d9fe4d811d29367335372d3211.  585 

Results and Discussion 586 

Four of the 29 participants quit the experiment before completing Phase 3, and were 587 

excluded from further analysis. This 14% non-completion rate matches the non-completion rate for 588 

the pigeons, although the reasons for non-completion were of course different.  589 

For the remaining 25 people, learning in Phase 1 was fairly rapid, with participants taking an 590 

average of 1.52 blocks to reach criterion (SD = 0.92, range = 1 – 4 blocks). Learning of the second 591 

patterning problem in Phase 2 was uniformly quick, with all participants reaching criterion in a single 592 

block. Note that pigeons found Phase 2 harder than Phase 1, while the reverse was true for humans. 593 

This difference in order of difficulty is consistent with the idea that people learn a patterning rule in 594 

Phase 1, which transfers positively to Phase 2, while pigeons learn a magnitude discrimination in 595 

Phase 1, which transfers negatively to Phase 2.  596 

People also learned the Phase 3 combination of patterning problems rapidly, taking a mean 597 

of 1.60 blocks to reach criterion (SD = 1.15, range = 1 – 5 blocks). Phase 4 added further compound 598 

and component trial types to Phase 3, but no further complete patterning problems (see Table 3). 599 

Two participants failed to meet criterion in Phase 4 within the ten blocks available, one participant 600 

approaching criterion in the final block, and one near chance. The remaining participants learned 601 

fairly rapidly, taking a mean of 2.22 blocks to reach criterion (SD = 1.78, range = 1 – 8). All 25 602 

participants progressed to Phase 5. 603 

Phase 5 completed the patterns of Phase 4 by the addition of novel test items. Accuracy 604 

exceeding 0.5 on these novel test items indicates rule-based generalization, while accuracy below 605 

0.5 indicates feature-based generalization. Table 5 shows accuracy on the novel test items for all 25 606 
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participants who completed the experiment. The majority of participants (16 of 25) generalized on 607 

the basis of the underlying rule. Critically, this was a significantly greater proportion of rule-based 608 

responders than had been observed in the pigeons, χ2 = 7.94, p < 0.01. Due to low expected values, 609 

Monte Carlo methods were employed in this test.2 The species difference remains significant if the 610 

humans failing the Phase 4 criterion are excluded from the analysis. It also remains significant under 611 

the conservative assumption that all four humans who did not complete the experiment would have 612 

shown feature-based generalization if they had. 613 

Note that the proportion of rule-based responders did not significantly exceed the 614 

proportion of feature-based responders, χ2 (1) = 1.96, p = 0.16. Such an effect would not be 615 

expected given the 75% criterion in Phase 4. Previous studies using the Shanks-Darby procedure 616 

suggest that terminal training accuracies of at least 90% are required to ensure a significant group-617 

level preference for rule-based generalization in humans (Shanks & Darby, 1998; Wills et al., 2011). 618 

In the current experiment, the criterion was set at a lower level to approximate the level of 619 

performance observed in the pigeons.  620 

In summary, all pigeons in Experiment 2A showed feature-based generalization, while the 621 

majority of humans in Experiment 2B showed rule-based generalization. Rule-learning again appears 622 

more readily in humans than in non-humans, at least in the current procedures.  623 

General Discussion 624 

In the experiments described above, rats, pigeons and humans were trained on one instance 625 

each of two symmetrical patterning problems. In Exp. 1A and 1B, rats and humans were then trained 626 

on one incomplete pattern, either negative or positive, while in Exp. 2A and 2B, pigeons and humans 627 

were trained on four incomplete patterns. During test, responding to the complementary stimuli 628 

was recorded. All animals (including humans) were able to master both patterning problems. 629 

                                                           
2 Specifically, we used the chisq.test function in the stats package of the R environment (R Core Team, 

2014), with 106 iterations. chisq.test uses Patefield’s (1981) algorithm. 
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However, despite mastery of the problems, generalization was feature-based in each and every one 630 

of the rat and pigeon subjects, while a majority of the human participants showed rule-based 631 

generalization. Our results suggest that seemingly rule-based behavior in non-human animals may 632 

be explained on the basis of simpler cognitive mechanisms and that non-human animals are less 633 

prone to exhibit rule-based generalization than humans under similar circumstances.  634 

There are some important differences in procedure between Experiments 1A and 1B on the 635 

one hand and 2A and 2B on the other hand. The rats did seem to learn the patterning problems 636 

quite rapidly compared to the pigeons. This might be due to a difference in go/no-go and go-left/go-637 

right procedures, where the latter are possibly more difficult. More likely, the difference is due to 638 

the difference in similarity between the stimuli used in the rat and human-rat analogue on the one 639 

hand and the pigeon and human-pigeon analogue on the other hand. On almost any measure, e.g. A 640 

and AB are more similar in the pigeon experiment than the rat experiment. Then again, the go-641 

left/go-right procedure has a clear advantage over the go/no-go task, with the former allowing 642 

clearer investigation of generalization from E and F. In the rat study, low levels of responding to EF 643 

are consistent with feature-based generalization but are also consistent with the animals not having 644 

learned anything about E and F. The trial-based analysis of Phase 2 shows a decrease of responses to 645 

E- and F- over trials, suggesting that the rats did learn not to respond to E and F, but in a go-left, go-646 

right procedure, those two options can be distinguished more clearly (with a lack of learning yielding 647 

chance performance and feature-based generalization yielding a preference for one side over the 648 

other). Another advantage of the pigeon and human-pigeon analogue over the other two 649 

experiments is that the former allowed tests of both generalization to components and to 650 

compounds. This would have been important if rule-based generalization had been observed in the 651 

rats, because the model of Verguts and Fias (2009), which is the only extant associative model able 652 

to provide a partial explanation of rule-based generalization of an opposites rule, can explain 653 

seemingly rule-based generalization to compounds only, not to elements. Thus, if rule-based 654 

generalization in the rat study would have been found, we would not have been able to completely 655 
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exclude an associative explanation (although it is a matter of debate whether the Verguts-Fias model 656 

counts as an associative model in the normal sense, see Wills et al., 2011, for further discussion). 657 

Another remark concerns the difference between the fixed amount of training used in Exp. 1A and 658 

1B and the variable amount of training based on performance used in Exp. 2A and 2B. Theoretically, 659 

it is possible that there was a difference in the extent to which the rats in Exp. 1A were overtrained 660 

compared to the humans in Exp. 1B, which might explain the difference in the degree of rule-based 661 

generalization between rats and humans. However, this cannot be said about Exp. 2A and 2B, 662 

because the subjects in both experiments were trained to criterion. Finally, in Exp. 1B and 2B 663 

different reinforcers were used (accumulation of points versus happy/sad faces), which were both 664 

effective in motivating and reinforcing the participants. The diversity of the designs probably 665 

increases the generality of our findings.  666 

The goal of the present experiments was to investigate whether non-human animals would 667 

be capable of rule-use, a capacity recently claimed to be uniquely human (Penn et al. 2008). While 668 

evidence for other human-like cognitive processes such as abstract concept and relational learning 669 

has been scarce at best (see Introduction), the results described in the current paper are indicative 670 

of an absence of rule-based learning in rats and pigeons. However, it might be premature to 671 

conclude that rule-based processes are indeed absent in those two species.   672 

For one thing, the observed difference between rats and pigeons on the one hand and 673 

humans on the other, could perhaps be due to a difference in speed of learning. It is possible that 674 

non-humans when learning are pushed by the difficulty of the task into adopting a configural 675 

strategy, which is unconducive to rule extraction. Humans, who learn more rapidly, may not be 676 

forced down this route and may instead apply an elemental strategy which is conducive to rule 677 

extraction. However, there are at least two problems with this explanation. First, empirically, we do 678 

not find much support for a relation between speed of learning and rule-based generalization in our 679 

data; e.g. in Experiment 2B, there was no correlation between total number of training blocks and 680 

degree of rule-based generalization (r= -0.18, t(23) < 1, p = 0.38). Second, theoretically, only a hyper-681 
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configural strategy, i.e. with no or very little feature-based generalization between the compound 682 

and its components, would reduce inference and thus decrease task difficulty. However, this hyper-683 

configural strategy should prevent all generalization at test, be it rule-based or feature-based, while 684 

the test results clearly indicate feature-based generalization in rats and pigeons. 685 

Yet, while rats and pigeons did not seem to extract rules in the current procedure, it cannot 686 

be excluded that those animals would show rule-based behavior under different circumstances. 687 

Important here is to note that opposites rule generalization is probably quite challenging. Indeed, 688 

only about half of the adult participants who master the patterning problems show rule-based 689 

behavior (Wills et al. 2011; see further analysis reported in Wills 2014) and it has been shown that 690 

under cognitive load even participants that master the patterning problems show feature-based 691 

generalization (Wills et al. 2011). If one makes the minimal assumption that rats and pigeons have 692 

more restricted cognitive capacities than humans (even if not qualitatively different), detection of 693 

the opposites rule in patterning problems might prove to be too difficult, while not excluding that 694 

rats and pigeons are capable of rule-based generalization when dealing with simpler rules. A valid 695 

reason for assuming that rats, and by extension pigeons, might show rule-based behavior in other 696 

tasks is the observation that rats are capable of generalizing sequential rules (see Introduction; 697 

Murphy et al. 2008). Sequential rules are probably easier to detect and apply to a new set of stimuli. 698 

Children from the age of seven months onward will generalize on the basis of rules in a task similar 699 

to the one employed by Murphy and colleagues (Marcus 1999). It would, therefore, be interesting to 700 

investigate whether the application of simpler rules that emerge relatively early in human life can be 701 

demonstrated in animals. 702 

In addition, Katz, Wright and colleagues have argued that, in order to investigate the 703 

presence or absence of a certain cognitive capacity, it is important to test animals repeatedly, 704 

providing an increasing number of examples (Wright 2010). In an experiment with pigeons, it was 705 

shown that pigeons do not show same/different discrimination after training with only a few 706 

examples, whereas such capacity does emerge after training with an extensive amount of examples 707 
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(Bodily et al. 2008; Katz and Wright. 2006). Katz and colleagues further demonstrated that the 708 

number of examples at the start of training matters as well. When training commenced with only a 709 

small number of examples, carryover effects hampered the performance of pigeons during 710 

generalization testing, but when pigeons received training with an extensive amount of examples 711 

from the beginning, same/different generalization was observed on the first test session (Nakamura 712 

et al. 2009). Given that relational learning in monkeys emerged faster, thus after fewer examples, 713 

than in pigeons (Wright and Katz 2006), it is possible that rule-based generalization in the Shanks-714 

Darby task might be observed when animals receive training on multiple examples. Certainly, when 715 

considering that humans have much more experience with the concept of oppositeness and rule-use 716 

in general than animals, it might be worthwhile to investigate whether opposites rule generalization 717 

would emerge in rats and pigeons with extended experience.  718 
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Tables 884 

Table 1 Design of Experiment 1A. The + represents 5-s access to 0.04 cc of water upon lever press, 885 

the - represents the absence of water; A/B, C/D and E/F represent buzzer/ light off, clicker/ low tone, 886 

and high tone/ flashing light, counterbalanced. All stimulus presentations were 30 s in duration. The 887 

numbers represent the number of stimulus presentations per session. Commas separate 888 

interspersed trials, slashes separate different blocks of a phase that are not intermixed. 889 

Group Phase 1 

NP transfer 6 A+, 6 B+, 12 AB-, 6 C-, 6 D-, 12 CD+ 

PP transfer 6 A+,  6 B+,  12 AB-, 6 C-, 6 D-, 12 CD+ 

Group Phase 2 

NP transfer 2 A+,  2 B+, 4 AB-, 10 C-, 10 D-, 4 CD+, 8 E+, 8 F+ 

PP transfer 10 A+, 10 B+, 4 AB-, 2 C-, 2 D-, 4 CD+, 8 E-, 8 F- 

Group Phase 3 

NP transfer 1 A+, 1 B+, 2 AB-, 2 C-, 2 D-, 2 CD+, 1 E+, 1 F+ / 2 EF / 4 E, 4 F, 4EF 

2 EF 

4 E/ 4 F/ 4 EF 

PP transfer 2 A+, 2 B+, 2 AB-, 1 C-, 1 D-, 2 CD+, 1 E-, 1 F-/ 2 EF/ 4 E, 4 F, 4EF 

2 EF 

4 E/ 4 F/ 4 EF 

 890 

Table 2 Design of Experiment 1B. A-F represent four different auditory and two different visual 891 

stimuli; the + represents availability of reinforcement on a VR schedule; the – represents the absence 892 

of reinforcement. Commas separate interspersed trials, slashes separate different blocks of a phase 893 

that are not intermixed. 894 

Group Phase 1 

PP transfer 16 A+, 16 B+, 32 AB-, 16 C-, 16 D-, 32 CD+ 

NP transfer 16 A+, 16 B+, 32 AB-, 16 C-, 16 D-, 32 CD+ 

Group Phase 2 

PP transfer 8 A+, 8 B+, 3 AB-, 2 C-, 2 D-, 3 CD+, 6 E-, 6 F- 

NP transfer 2 A+, 2 B+, 3 AB-, 8 C-, 8 D-, 3 CD+, 6 E+, 6 F+ 

Group Phase 3 
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PP transfer 2 A, 2 B, 2 AB, 1 C, 1 D, 2 CD, 1 E, 1 F/ 2 EF/ 4 E, 4 F, 4EF 

2 EF//  

4 E/ 4 F/ 4 EF 

NP transfer 1 A, 1 B, 2 AB, 2 C, 2 D, 2 CD, 1 E, 1 F/ 2 EF/ 4 E, 4 F, 4EF 

2 EF//  

4 E/ 4 F/ 4 EF 

 895 

Table 3 Design of Experiment 2A and 2B. Response 1 and 2 represent left or right response, 896 

counterbalanced; A-K represent different Chinese characters, counterbalanced; bold type indicates 897 

the critical test stimuli.  898 

Phase 1 

Response 1 A, B      

Response 2 AB, BA      

Phase 2 

Response 1  CD, DC     

Response 2  C, D     

Phase 3 

Response 1 A, B CD, DC     

Response 2 AB, BA C, D     

Phase 4 

Response 1 A, B CD, DC  GH, HG  K, L 

Response 2 AB, BA C, D E,F  IJ, JI  

Phase 5 

Response 1 A, B CD, DC EF, FE GH, HG I, J K, L 

Response 2 AB, BA C, D E,F G, H IJ, JI KL, LK 

 899 

Table 4 Results for Experiment 2A, Phase 5. Accuracy for familiar stimuli and novel stimuli in Session 900 

1. 901 

Bird Familiar Novel 

 Ax 0.63 0.13 

Bw 0.74 0.19 
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Fe 0.80 0.25 

He 0.79 0.21 

Mo 0.81 0.06 

Ta 0.65 0.38 

Note. Accuracy below 0.5 on novel items indicates feature-based generalization. 902 

 903 

Table 5. Results Experiment 2B. Accuracy for familiar stimuli, and novel stimuli, in Experiment 2B, 904 

Phase 5. 905 

Human Familiar Novel Human Familiar Novel 

23 1.00 0.88 7 0.67 0.46 

13 0.88 0.88 11 0.77 0.38 

10 0.81 0.75 14 0.73 0.38 

17 0.79 0.75 16 0.69 0.38 

28 0.92 0.71 6 0.65 0.37 

18 0.83 0.71 19 0.71 0.29 

9 0.81 0.71 22 0.77 0.25 

1 0.94 0.67 8 0.85 0.21 

5 0.85 0.67 27 0.75 0.21 

24 0.90 0.62    

25 0.73 0.62    

29 0.73 0.62    

5 0.75 0.62    

20 0.56 0.58    

26 0.48 0.58    

12 0.62 0.54    

Note. Accuracy above 0.5 on novel items indicates rule-based generalization (left hand columns). Accuracy 906 

below 0.5 indicates feature-based generalization (right hand columns). 907 
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Figure captions 908 

Fig. 1. Mean number of responses over 30 s during reinforced and unreinforced components 909 

and compounds across the 27 days of Phase 1 training and mean number of responses over all 30 s 910 

prestimulus periods from the eighth day onwards. Error bars represent within-subject standard error 911 

of the mean for each stimulus as calculated by the SPSS plug-in of O’Brien and Cousineau (2014). 912 

Fig. 2 Mean elevation scores over 30 s for the generalization components E and F for groups 913 

NP transfer and PP transfer (squares) across the eight days of Phase 2 training (A) and across all 914 

trials of the first Phase 2 training day (B). Error bars represent within-subject standard error of the 915 

mean with group as between-subject factor as calculated by the SPSS plug-in of O’Brien and 916 

Cousineau (2014). 917 

Fig. 3 Mean elevation scores for the first 30 s presentation of the EF compound for groups 918 

NP transfer and PP transfer. Error bars represent standard error of the mean.  919 

Fig. 4 Mean number of responses during the last part of Phase 1 for reinforced components 920 

A and B, unreinforced compound AB, unreinforced components C and D and reinforced compound 921 

CD. Error bars represent within-subject standard error of the mean for each stimulus as calculated 922 

by the SPSS plug-in of O’Brien and Cousineau (2014). 923 

Fig. 5 Mean number of responses during presentations of E and F during the last day of 924 

Phase 2 training (left) and mean number of responses during the first presentation of EF during 925 

Phase 3 training for NP transfer and PP transfer groups. Error bars represent between subject 926 

standard error of the mean.  927 

Fig.6 The six pairs of Chinese characters used in Experiments 2A and 2B. 928 
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