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This research explored the role that associative learning may play in human sequence learning.
Two-choice serial reaction time tasks were performed under incidental conditions using 2 different
sequences. In both cases, an experimental group was trained on 4 subsequences: LLL, LRL, RLR, and
RRR for Group “Same” and LLR, LRR, RLL, and RRL for Group “Different,” with left and right
counterbalanced across participants. To control for sequential effects, we assayed sequence learning by
comparing their performance with that of a control group, which had been trained on a pseudorandom
ordering, during a test phase in which both experimental and control groups experienced the same
subsequences. Participants in both groups showed sequence learning, but the group trained on “different”
learned more and more rapidly. This result is the opposite that predicted by the augmented simple
recurrent network used by F. W. Jones and I. P. L. McLaren (2009, Human sequence learning under
incidental and intentional conditions, Journal of Experimental Psychology: Animal Behavior Processes,
Vol. 35, pp. 538–553), but can be modeled using a reparameterized version of this network that also
includes a more realistic representation of the stimulus array, suggesting that the latter may be a better
model of human sequence learning under incidental conditions.
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Understanding human sequence learning under incidental con-
ditions, whether it involves learning a sequence of events or a
sequence of actions, is key to explaining much of human and
infrahuman behavior. To learn sequences, people and animals need
to cope with information embedded in a temporal context, adding
an extra dimension to the more static problems typically studied in
research on associative learning, and bringing them closer to those
that occur in real situations outside the laboratory. This extra
complexity also constrains the modeling of human sequence learn-
ing, where it is often addressed by the addition of recursion to

otherwise static models, for example, the simple recurrent network
(SRN; Elman, 1990) and the augmented SRN (Cleeremans &
McClelland, 1991). The question that this article addresses is
whether or not these models provide adequate accounts of se-
quence learning under incidental conditions.

In the experiment reported here, we focused on a very simple
task in which sequence learning is known to occur, even though it
is not explicitly required, and is hence often cited as a situation in
which “implicit” learning occurs. This is the variant of the two-
choice serial reaction time (SRT) task recently developed by Jones
and McLaren (2009). In this task, participants observe two circle
outlines on a screen and are given two response keys, one for each
circle. On each trial, one of the circles “fills in,” and the partici-
pants press the corresponding key as quickly and accurately as
possible. Following this, the circle outlines reappear for 500 ms
before the next trial starts. Trials come rapidly one after the other,
and the experience is of a fast-paced task that emphasizes speed
and accuracy in reacting to the stimuli and requires little else.

In fact, for the experimental groups in this task, there is a
probabilistic rule governing the sequence of locations in which the
circle appears, knowledge of which could enable participants to
prepare for the stimulus and so increase the speed and accuracy of
their responding. The roles of the two stimulus locations are
counterbalanced across participants and henceforth are referred to
as X and Y rather than right and left. In our previous work (Jones
& McLaren, 2009), we were able to show that the augmented SRN
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(Cleeremans & McClelland, 1991) could successfully model inci-
dental learning of a sequence that comprised subsequences XXX,
YYX, XYY, YXY, which follow the rule that if the first two
locations are the same, then the third is an X; if they are different,
then it is a Y.

In the current experiment, we varied the subsequences to see
whether the augmented SRN could still model the results. Thus,
one group in this experiment had XXX, YYY, XYX, and YXY as
their subsequences, which follow the rule that the third element is
the same as the first. By concatenating these subsequences (e.g.,
XXXYYYXYX . . . etc.), we can produce a sequential structure
that has the property that two thirds of the time a trial is the same
as the trial before last. The other group was trained on the com-
plementary set XXY, YYX, XYY, and YXX, where the rule is that
the third element is different from the first, so that after concate-
nation, two thirds of the time the current trial is different from the
trial before last. In our experiments, learning was measured rela-
tive to pseudorandom control groups. The controls experienced a
mixture of all eight subsequences so that the first trial had no
predictive value for the third. Our interest, then, was in comparing
the differences between experimental and control groups for those
participants trained on sequences in which the first trial was
different from the third (Group Different) with those trained on
sequences in which the first was the same as third (Group Same).
The factor of group, denoting the type of subsequences used during
training, was a dummy variable for the controls as all of these
participants received the pseudorandom mixture of all eight sub-
sequences throughout.

We focused on this comparison because a simple extrapolation
from the empirical results of Jones and McLaren (2009) leads one
to predict that Group Different should have an advantage. This is
because the subsequences XXX and YYY can be expected to be
very difficult to learn based on these earlier findings and both of
these subsequences fall in Group Same. Intriguingly, when we ran
the augmented SRN on this new experiment with the same param-
eters as those used in Jones and McLaren, the pattern we obtained
was actually the reverse, with Group Same subsequences learned
better than Group Different subsequences. Thus, evidence-based
intuition and the model seem to be in conflict, and an empirical test
was needed to resolve the issue. We return to a discussion of the
modeling once we have reported the results of our experimental
work.

Method

Participants

The study was conducted on 128 participants, randomly divided
into four groups (two experimental and two control). There were
32 participants in each of the two experimental conditions and in
the two control conditions (both control conditions were actually
treated identically and participants were randomly assigned as the
control for one of the two experimental conditions). The partici-
pants were all students at the University of Exeter, ages from 18 to
35 years. In addition, each of the participants was rewarded for
their contribution with £10 at the end of their second session.

Materials

The two-choice SRT task was run on an Apple Mac computer,
with the basic display being one of two white outline circles on a
black background. The circles were 1.9 cm in diameter and each
was positioned 2.2 cm to the right or left of the middle of the
screen, which was approximately 0.5 m from the participant. The
stimulus was a white filled circle 1.9 cm in diameter that replaced
either the right or left outline circle during the trials. The partici-
pants were instructed to press the x key on a QWERTY keyboard
if the target stimulus appeared on the left and the period (.) key if
the stimulus appeared on the right. These keys were chosen to be
spatially compatible with the two stimulus locations.

Design

The experiment consisted of a two-choice SRT task that was
conducted over two sessions, each lasting approximately 1 hr. The
first session was usually undertaken in the morning, with the
second session typically commencing after a 3- to 4-hr break on
the same day. Both sessions consisted of 20 blocks of 120 trials,
with the last five blocks of Session 2 acting as the test phase. All
other blocks acted as the training phase. The blocks for each of the
experimental conditions were constructed by concatenating equal
numbers of the relevant subsequences, as already described. Thus,
during the training phase of the SRT task, experimental partici-
pants in Group Different were presented with sequences made up
of subsequences in which the location of the third trial was the
location opposite to that of the first trial (e.g., XXY). The rule was
different for participants in the experimental condition of Group
Same; in training, they were presented with sequences made up of
subsequences in which the third trial location was the same as the
first trial location (e.g., XYX). During training, participants in the
control conditions experienced pseudorandom blocks, which were
created by concatenating equal numbers of the eight possible triplets
in a random order (see Jones & McLaren, 2009, for further details).
Note that, for all the conditions and groups, when the subsequences
(or triplets) were concatenated, they formed continuous strings of
trials, and previous evidence suggests that participants do not learn
about the special status of the third trials, but rather learn the contin-
gencies on a trial-by-trial basis (Jones & McLaren, 2009). When
training blocks are considered trial-by-trial, trials consistent with the
experimental groups’ subsequences occur two thirds of the time, with
the remaining third of trials being inconsistent (e.g., in the experi-
mental condition of Group Same, XX is followed by X twice as often
as it is followed by Y).

For all conditions, the last five blocks of Session 2 acted as the
test phase and consisted of pseudorandom blocks only. By com-
paring experimental and control performance on what are effec-
tively the same types of sequence, we controlled for possible
confounds due to sequential effects (Jones & McLaren, 2009).

Procedure

As in Jones and McLaren (2009), the participants were in-
structed to respond as quickly as possible while avoiding errors.
No mention was made of any sequential structure embedded in the
task. On each trial, the stimulus remained on the screen until the
participant had responded or was timed out for not having pressed

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

167HUMAN SEQUENCE LEARNING



a key within 4.25 s of the stimulus’ appearance. RT was measured
from the stimulus’ appearance on screen until the computer de-
tected a key press, and a 500-ms response–stimulus interval was
used. If participants pressed an incorrect key or were timed out,
then the trial terminated and the computer issued a short “beep.”
Similarly, if they anticipated a stimulus (i.e., they responded less
than 100 ms after its onset), then the trial was aborted and a beep
sounded. Following each block, participants experienced a 30-s
break during which they were shown their average RT (in milli-
seconds) and their accuracy (as an error percentage) for the last
block. They were also informed whether these scores were better
or worse than those from the previous block.

Results

For the test phase data, we computed difference scores by
subtracting the mean RTs and proportion of errors for trials that
were consistent with each subsequence from the respective scores
for trials that were inconsistent. To illustrate, consider the Group
Same experimental condition subsequence XXX. Any X trial that
is preceded by XX (which we label as an XXX trial) is consistent
with the subsequence XXX, whereas any Y trial that is preceded
by XX (i.e., XXY) is inconsistent with this subsequence. There-
fore, the RT difference scores for subsequence XXX were calcu-
lated by subtracting the mean RT for XXX trials from the mean RT
for XXY trials, and a similar subtraction gave us an equivalent
difference for errors. This was done for all experimental subse-
quences, for each group and condition. In the control conditions,
consistent/inconsistent was a dummy variable that was determined
by the subsequences in the paired experimental condition.

Because the experimental conditions experienced different trial
orders from their respective control conditions in training, any
difference between the conditions here could be due to sequential
effects (i.e., performance differences on different trial orders)
instead of sequence learning (cf. Soetens, Boer, & Hueting, 1985).
To minimize this confound, we used the method of calculating
inconsistent minus consistent training difference scores described
by Jones and McLaren (2009). Sequential effects of up to order
n – 3 were controlled for by equal-weight averaging of the two
versions of each subsequence that exist when the n – 3 trial is also
considered (e.g., the score for XXX is the equal-weighted average
of the scores for YXXX and XXXX). Insufficient data meant
sequential effects of n – 4 and greater could not be controlled for
in this way, but an inspection of our data suggests that n – 4
sequential effects are in the order of 1 ms (for a more detailed
discussion, see Jones & McLaren, p. 543). This type of analysis
sometimes leads to decreased degrees of freedom because some
participants do not have sufficient data to contribute to all the
analyses. To minimize this, we collapsed data from pairs of blocks;
that is, in the analyses, data from Blocks 1 and 2 were treated as
being from one block.

Our expectation was that, for both training and test, sequence
learning should increase the difference scores of the experimental
conditions compared with their respective controls because it
should increase RT and errors on inconsistent trials and decrease
RT and errors on consistent trials. Figure 1 shows these scores
during training and test. We examine the training data first.

Considering the control conditions, the pattern here can be
attributed to sequential effects. The Group Same control condi-

tion’s scores were positive for both errors and RTs because the
Group Same subsequences were trial orders that participants found
relatively easy to respond to, but note that the Group Same
experimental scores were higher still, suggesting that training on
the Group Same subsequences led to sequence learning. The
Group Different control condition scores were approximately the
mirror image of those for the Group Same control condition, with
any (small) deviation from this attributable to random variation.
Thus, their inconsistent minus consistent scores are negative be-
cause their subsequences were those that participants did not find
easy to perform. Once again, the experimental condition’s scores
were higher than their controls (much higher in the case of errors),
suggesting that training on the Group Different subsequences
resulted in sequence learning.

We can assess the main effect of condition (experimental vs.
control) for Group Same in RTs, F(1, 48) � 68.96, p � .001, and
errors, F(1, 57) � 7.97, p � .008; similarly for Group Different in
RTs, F(1, 48) � 72.93, p � .001, and errors, F(1, 54) � 44.59,
p � .001. In all cases, there was good evidence of superior
performance in the experimental conditions, and the difference
between experimental and control conditions increased over
blocks in both groups, further supporting the conclusion that the
participants learned at least some of the statistical structure of
these sequences during the course of training. The interaction
between condition and block that supports this assertion was
significant in both RTs, F(16, 768) � 5.31, p � .001, and errors,
F(16, 864) � 3.82, p � .001 in Group Different. The same
Condition � Block interaction was also significant in Group Same
for RTs, F(16, 768) � 5.93, p � .001, and errors, F(16, 912) �
1.76, p � .04. Hence, both groups exhibited reliable learning of the
sequences during our experiment, but the difference between ex-
perimental and control conditions over blocks also differed for
Group Different and Group Same, as the Group � Condition �
Block interaction was significant in the RTs, F(16, 1536) � 1.98,
p � .012, but not in the errors, F(16, 1776) � 0.812, p � .67.
Inspection of the graphs in Figure 1 suggests that this reflects the
somewhat faster learning in Group Different in Session 1 but not
in Session 2.

The test data are based on performance on the pseudorandom
blocks composing the last five blocks of the experiment and are
shown on the right of Figure 1. Once again, there is evidence of
learning in that RT differences for both Group Different and Group
Same experimental participants were significantly higher than
those for controls. Specifically, there was a main effect of condi-
tion (experimental vs. control) in Group Different’s RTs,
F(1, 62) � 61.46, p � .001, and errors, F(1, 62) � 41.08, p � .001,
and a main effect of condition in Group Same’s RTs, F(1, 62) �
36.39, p � .001, although the error data just fail to reach signifi-
cance, F(1, 62) � 3.97, p � .051. Both RTs and errors show
numerically better sequence learning expressed on test for Group
Different than Group Same, with a significant interaction between
condition and group in the errors, F(1, 124) � 4.76, p � .031,
accompanied by a nonsignificant trend in the RTs, F(1, 124) �
1.99, p � .16. Using Brown’s (1975) procedure for combining
analyses that are not independent, we can generate an overall �2

for the RT and error measures of 7.65, with 2.3 df, which has an
associated p � .05. Thus, we can conclude that the participants
trained on the Group Different subsequences performed better on
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test than those trained on the subsequences given to Group Same,
with no hint of any speed–accuracy trade-off.

Discussion

Our findings are quite clear and straightforward. Under inciden-
tal conditions, participants trained on the subsequences experi-
enced by Group Different, namely XXY, XYY, YXX, YYX,
learned more than those trained on the subsequences experienced
by Group Same, that is, XXX, XYX, YXY, YYY. This resulted in
better performance in a final test phase that controls for any
possible sequential effects by using the same pseudorandom se-
quences for all groups and conditions. The effect was not large, but
it was entirely reliable and not compromised by any issues of
speed versus accuracy.

We are also able to offer some reassurance that our results were
indeed obtained under incidental conditions. By the end of the
study, no participants were able to tell us what the subsequences in
the experiment were. This fits well with the claims made by Jones
and McLaren (2009) for this paradigm under the same conditions,
and reassures us that our instructions and procedures placed our

participants in this experiment on a footing similar to that in the
earlier study. Given this, we can now inquire whether the model
that fit the data in Jones and McLaren, the augmented SRN
(Cleeremans & McClelland, 1991), is also able to fit these results.

We attempted to model the experiment using the augmented SRN
with exactly the parameters given in Jones and McLaren (2009). In
this model (shown in Figure 2; please disregard the two input units at
the bottom labeled “Next trial” for this purpose), the two possible
stimulus locations were each assigned an input unit (units labeled
“Current trial”) and were activated as appropriate on each trial,
following the same sequential structure, number of trials, blocks, and
sessions as used for participants. These fed-forward to a set of hidden
units, which in turn activated two output units (labeled “Prediction of
next trial”), with the activity of units in both layers determined by the
logistic activation function (Rumelhart, Hinton, & Williams, 1986).
At the end of each trial, the activations of the hidden units were copied
via one-to-one feedback connections to a set of “context units” on the
input layer (labeled as “Copy of last trial’s hidden units”). This
recurrence is the essence of Elman’s (1990) SRN architecture. The
output units corresponded to the two possible stimulus locations, and

Figure 1. Reaction time difference scores (top half) and proportion of errors differences scores (bottom half) during
training (left panels) and on test (right panels). Blocks are given in block pairs (i.e. 2 means the average of Blocks 1
and 2), and there was a break between Blocks 20 and 21 (two different sessions at least 2 hr apart). Only 14 blocks
(seven block pairs) are shown in the second session as the last five blocks were used as the test phase.
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their activation represented the model’s prediction of the identity of
the next trial.

The augmented SRN has a similar architecture to the SRN, but
differs in its feed-forward connections. Where the SRN has mod-
ifiable network connections driven by a single learning parameter,
the augmented SRN has two components to these connections, fast
and slow (not shown separately in the figure), which have higher
and lower learning rates, respectively. The fast components also
decay by half their value at each time step, a feature adopted by
Cleeremans and McClelland (1991) to help account for the robust
short-term priming effect observed in their data. In addition, the
augmented SRN includes a set of response units to capture the
effect that responding to the previous trial has on the current trial,
whereas the SRN lacks this component. Cleeremans and McClel-
land (1991), Cleeremans (1993), and Jiménez, Mendez, and
Cleeremans (1996) have shown that this model can capture the
detailed pattern of SRT data.

Using the stimulus location on the following trial as a training
target, we modified the weights (both fast and slow in the aug-
mented SRN) determining the strength of each connection between
units according to the back-propagation algorithm (Rumelhart et
al., 1986). As in the simulations conducted by Jones and McLaren
(2009), the networks used had 20 hidden units and a slow learning
rate parameter of 0.4, with the fast weights having a learning rate
1.33 times larger. Thirty-two networks were run in each of the four
cells of the experimental design. The results are shown in the top
panels of Figure 3. If we compare the simulations to the empirical
results, then first impressions are that there is some correspon-
dence, especially given that we have not fit the model to the data
by varying parameters. The augmented SRN does quite well in
predicting the basic pattern during training in that experimental
and control groups are appropriately placed with respect to one
another, and at least some of the trends observed in our data are
also present in the simulations.

But the crucial point is that there are areas of significant dis-
agreement between our data and the model predictions. Most
important are those in the test data (top right panel of Figure 3).
Both groups demonstrate a significant main effect of condition:
For Group Different, F(1, 62) � 290.65, p � .001, and for Group
Same, F(1, 62) � 1383.87, p � .001, but the significant interaction
between condition and group, F(1, 124) � 11.61, p � .002,
confirms reliably greater sequence learning in Group Same for the

augmented SRN, which is the contrary pattern of results found in
our empirical study. Thus, we have to reject the augmented SRN,
or at least this version of it, as an adequate model for our data.
Furthermore, with this architecture, we have, to date, been unable
to find a set of parameters for the augmented SRN that will allow
it to correctly predict the ordering of Groups Different and Same
on test despite an extensive search over the parameter space for the
model, suggesting that, as it stands, it cannot model our data. In
any case, we can conclude that the version of the model that was
successful in modeling the data in Jones and McLaren (2009) is
demonstrably falsified by our results.

This outcome is surprising as the augmented SRN is our
benchmark model of sequence learning and coped very well
with the pattern of results that we obtained in Jones and
McLaren (2009). Our initial response was to revert to the
version of the SRN adopted in Spiegel and McLaren (2006).
This proved capable of simulating more learning in Group
Different than Group Same, but only at the cost of losing the
ability to adequately simulate the overall pattern for our data set
on test, and it does not provide as good a fit to the Jones and
McLaren data. After considering various other modifications of
the network, we finally realized that our simulation of this task
using the augmented SRN was unrealistic in the following way.
Recall that our architecture was feed-forward (and recurrent)
with two input units set according to which location (i.e., left or
right) was designated as a response on the trial just past and
context units whose activation was set by the hidden unit
activations on the previous trial as well. What we had failed to
include in our model was anything that represented the stimu-
lus—the filled circle—that always occurred just before a re-
sponse was made. This was because this stimulus completely
specified the response, and it would have seemed odd to include
something so directly predictive when we were interested in the
ability of the network to learn the sequential contingencies in
play, not learn that when the left circle filled, it was to produce
a left response! But our participants would have been exposed
to just such a contingency, and so would have had the oppor-
tunity to learn about it. In some sense, this captures the idea of
some automatization occurring in the course of experience that
takes over from the instruction to press the corresponding key
when one of the circles fills. Hence, we included these inputs in
our new network (the input units labeled “Next trial” in Figure
2), but, because the circle only fills just before the response, we
gave it a relatively low weighting in our model.1 With this
addition, we were able to successfully reparameterize the aug-
mented SRN to produce our pattern of results in this experiment
and still generate the pattern of results found by Jones and
McLaren (2009). A typical set of simulation results for the
current experiment is shown in the bottom panels of Figure 3.
These simulations were run using the two additional input units,
and activation of the unit corresponding to the response re-
quired on the to-be-predicted trial was set to 0.1. Input activa-
tions corresponding to the response units that had been acti-

1 The low weighting was intended to reflect the fact that the timing was
suboptimal for an associative network learning to predict the next response
required, but this is a completely separate issue to the cue’s predictiveness,
which, of course, was 100%.

x 

y 

y 

Copy of last trial’s hidden units Current trial 

Prediction of next trial

x

y x 

Next trial 

Hidden units 
One-to-one feedback connections 

Figure 2. Model architecture for the augmented simple recurrent network
(SRN) used in Jones and McLaren (2009, Figure 7), with the addition of
two extra input units (corresponding to the two response locations) labeled
“Next trial.” See text for a description of the model and its operation.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

170 YEATES, JONES, WILLS, MCLAREN, AND MCLAREN



vated on the previous trial were set to 0.75, and the context unit
activations were set to 1.3 times the hidden unit activations
from the previous trial. These parameters modulate the relative
weightings of the contributions to learning from the different
inputs and the context units, and were deliberately chosen to
allow us to simulate our data. The learning rate parameters for
the fast and slow weights were set to 0.5 and 0.2, respectively,
and other parameters were the same as those used in Jones and
McLaren.

The training data shown on the left of the bottom panel of
Figure 3 again have the different conditions/groups in their
appropriate relative positions. The control groups are once
again approximate mirror images, and now produce a somewhat
more stable pattern of performance over time. Learning pro-
ceeds at approximately the same rate in the two experimental
groups (it is slightly faster overall for Group Different). The
real data of interest are those at test, however, and here the
pattern corresponds closely to that in our empirical data. There
is a main effect of group, F(1, 124) � 1682, p � .001, a main
effect of condition, F(1, 124) � 717, p � .001, and importantly,
an interaction between group and condition, F(1, 124) � 4.08,

p � .05, such that the difference between experimental and
control conditions for Group Different is significantly greater
than that for Group Same. In other words, Group Different
sequences are better learned than Group Same sequences, al-
though the effect is relatively small (roughly 10%) compared
with the main effects. This is very much the pattern, and the
power, that we observed in the empirical data we report here.
We can also confirm that this model captures the pattern of
subsequence learning observed in Jones and McLaren (2009),
and also predicts that it is the difference in performance be-
tween XXX and the other sequences used in 2009, XYY, YXY,
and YYX, that will be the easiest to detect. It would appear,
then, that this revised model is a candidate to be our new
benchmark for modeling sequence learning with this task under
incidental conditions.

Why does this revised model succeed where the standard aug-
mented SRN failed? The new version of the model differs from the
old version in both including a more accurate representation of the
stimulus conditions in the experiment (an unambiguously good
thing) and in possessing more free parameters as a consequence of
this modification. Is its success simply a consequence of greater
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Figure 3. Mean square error (MSE) difference scores during training and test for the simple recurrent network
(augmented SRN; top) and the revised augmented SRN (bottom). We did not attempt to simulate the delay
between Blocks 20 and 21. Otherwise, it is laid out exactly as Figure 1.
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flexibility in fitting the data contingent on this increase in free
parameters? We believe this is not the right explanation because
when we simulated the Jones and McLaren (2009) data with the
new model, we did not vary the parameters at all, implying that our
success (the fit was actually better than in the Jones and McLaren
paper) is unlikely to represent “overfitting” of the data. Instead, we
believe that the inclusion of the units corresponding to the circle
stimulus on the current trial is the critical feature making the
difference, and if we take this out of the simulation, leaving
everything else unchanged, then the model reverts to predicting
that Group Same should perform better on test than Group Differ-
ent. The change made is in some sense minor, but is also impor-
tant. It does not represent a change in the algorithms used in the
augmented SRN, or even in its basic architecture, but it is a
departure from conventional simulation practice as far as the SRT
task is concerned. As far as we are aware, no one else modeling
sequence learning involving this type of task includes the current
stimulus as an input in the model—but clearly it matters. Why has
it typically been left out when simulating sequence learning in the
SRT task? We think the reason is fairly straightforward: Research-
ers were (are) interested in sequence learning, and putting in this
input contributes nothing to learning about the contingencies be-
tween sequences of events in this task, it just allows stimulus–
response (S-R) learning. This type of information cannot actually
assist in learning sequential structure, and would be expected to be
the same in both experimental and control groups, and hence
controlled for when assaying sequence learning. But, although this
S-R learning cannot produce a difference between experimental
and control groups in its own right, we now realize it can modulate
our ability to learn about sequential structure, and so influence the
size of that difference. It does this, we believe, via cue competi-
tion, which itself varies as a function of the local temporal se-
quence of events experienced. To see this, consider as an example
the sequence LLL (three left responses required in a row). On the
first two trials of this sequence, the augmented SRN will learn
(transiently) that a left on trial n – 1 predicts a left on trial n, and
also the association between the left stimulus and the required left
response will have been incremented. The first effect makes learn-
ing the “LL is followed by L” structure difficult, because it
partially blocks it (this is the explanation of why LLL is learned
poorly under implicit conditions given in Jones & McLaren, 2009).
But the second effect, incrementing the S-R learning, also contrib-
utes to blocking learning of the “LL is followed by L” contin-
gency. Learning LLR is, relatively speaking, easier because the R is
surprising in terms of the “L predicts L” transient learning, and, in this
case, the R stimulus to R response association will not have just
received two increments. Thus, the increments to the S-R associations
are more of a problem for some subsequences (which turn out to be
those in Group Same) than others, and so contribute to Group Same
learning the sequential structure more slowly. For this reason, we
cannot simply disregard this S-R information any more on the basis
that it will be the same for both experimental and control groups.
Clearly, we should not disregard this aspect of the task in any case if
we are to hold to the view that these models are automatic in their
operation and learn about all elements of the perceived stimulus array.
If we are to believe that this is a real psychological model of asso-
ciative learning, then, because the circles in the experiment signal
which response to make, there must be something in the model that
represents this, and the model will inevitably learn about this 100%

reliable contingency. But now we can see that if we do neglect this
aspect of the stimulus conditions, then our simulations do not match
the empirical data, which is, in some sense, a rather encouraging
outcome for this modeling approach.

Are there any discrepancies between our model’s simulation and
the data? One obvious discrepancy arises when comparing the
training data from the model and our empirical results. The change
from Session 1 to Session 2 is not captured by the model, but this
is hardly surprising as we have no way of representing it in the
model at present. Perhaps the worst aspect of the model as it stands
is that it has Group Same learning faster than Group Different in
the middle section of the graph, whereas the empirical data show
the reverse, but even here it is difficult to know whether this is a
reliable difference, and the analysis is compromised by both the
effect of a change of session and a lack of power. We acknowledge
that it is also possible to criticize the current model for being rather
slow to learn. We speculate that a modification of back-
propagation, APECS (Le Pelley & McLaren, 2001; McLaren,
1993, 1994, 2011), instantiated in a recurrent architecture (Jones,
Le Pelley, & McLaren, 2002) might be the way forward here in
terms of improving learning and incorporating aspects of memory
that might permit the session effect to be captured. But, for now,
on the basis of the data available in the literature on sequence
learning in humans and contained in this article, the revised aug-
mented SRN is our benchmark model of sequence learning.
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