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Abstract

The effects of limited processing time were investigated
for the binary categorization of artificial multidimensional
objects. Following Lamberts and Freeman (1999), in the
first stage of the experiment participants learnt to
categorize 9 stimuli into two categories. In the second
stage, the same stimuli were presented for categorization,
and both the display time, and the time available in which
to make a decision, were varied independently. It was
found that each of these variables had a significant effect
on accuracy of categorization, as well as response latency.
Lamberts and Freeman (1999) demonstrated that
restricting presentation time of a certain stimulus in their
category structure caused a reversal in category
assignment. We found evidence of the same reversal, but it
was dependent on the time available to make a decision
rather than the duration of stimulus display. Importantly,
changes in accuracy due to response deadline were not
explicable in terms of truncation of processing by the
limited time. The study provides an empirical
investigation of the intuitive notion that both perceptual
processing and decision making components are time
dependent.

Introduction

Our ability to assign the objects we see to the categories
we know has been studied intensely over the years. One
highly successful class of categorization theories is that
of exemplar models, which assume that category
learning involves the storage of instances in memory.
Under these models, assigning a stimulus to a category
involves computing its similarity to all stored
exemplars. Perhaps the most influential formal model
of this is Nosofsky’s (1986) generalized context model
(GCM), an extension of Medin and Schaffer’s (1978)
context model. In recent years there has been a growing
interest in how the temporal characteristics of
categorization could be incorporated into this model,

which in itself makes no predictions about how
constituent processes occur over time. It has been
acknowledged that analysis of temporal aspects could
help elucidate various details of categorization in
general (e.g. Lamberts, 1995). Furthermore, time
constraints may be important in real-life category
decisions, making understanding the time course of
processing important in itself.

The GCM regards stimuli as points in
multidimensional space, with each dimension
corresponding to some psychological dimension in the
stimulus representation. Selectively attending to a
dimension stretches the space along that dimension and
shrinks it along unattended ones. Assigning a stimulus i
to any one category in memory involves computing its
perceived similarity (an exponential function of
distance in the multidimensional space) to every stored
exemplar in every category. Evidence that stimulus i
belongs to category A is obtained by summing its
similarity to all the stored exemplars in the category A
representation. The conditional probability of the item
being classified into category A is given by dividing
this evidence by the summed evidence for all
categories.

Categorization is often assumed to comprise two
distinct stages: an initial perceptual stage followed by a
memory-retrieval and decision stage (e.g. Lamberts,
1998). As embodied by the GCM, in the perceptual
processing stage the stimulus is processed and its
perceived similarity to all exemplars is computed. In the
decision-making stage, the resultant similarity
information is used to make a decision about category
membership. Correspondingly, there are two distinct
ways in which categorization’s time course has been
incorporated into the GCM. Lamberts’ (1995) Extended
GCM (EGCM) assumes that it is perceptual processing
time that varies systematically. The EGCM models this

1218



stage as an all-or-none stochastic perceptual sampling
process, with each dimension of a stimulus having an
independent probabilistic function determining how
quickly it is likely to be processed. When perceptual
processing times are restricted, it is assumed that
subsequent category decisions are carried out on the
basis of whatever dimensions have been sampled by the
time perceptual processing is terminated. Thus for the
EGCM it is the distance in psychological space from,
and hence perceived similarity to, the stored exemplars
which develops over time; and this changes in discrete
steps.

On the other hand it is the decision stage to which
temporal components have been added in Nosofsky and
Palmeri’s (1997) exemplar based random walk model
(EBRW). The EBRW supposes that presentation of a
stimulus causes stored exemplars to be activated to
varying degrees, and thus to race to be retrieved from
memory and contribute to decisions regarding category
membership. The degree of activation of an exemplar
(and hence the rate at which each exemplar races) is
proportional to its similarity to the test item, and also to
its strength in memory. Immediately after an exemplar
is retrieved, a new race is initiated and the next
exemplar will be retrieved. Retrieved exemplars feed
into a Random Walk process (e.g. Laming, 1968). For a
2-category decision, a random walk indicator moves
between 2 decision barriers, one representing category
A and the other category B. Each retrieved exemplar
will move the counter in the direction of either category
A or category B (depending on the exemplar’s category
membership). When the counter reaches one or other
barrier, a corresponding response is initiated.

Each of these models has been able to account well
for the temporal aspects of perceptual categorization
data. The EBRW was designed with a view to
predicting response times (Nosofsky and Palmeri,
1997). The duration of a random walk is determined
both by the total number of steps required to initiate a
response, and by the time taken to make each of these
steps. One conceptual prediction of the model is that
rapid classification decisions should be made for items
that are highly similar to exemplars from one category
and dissimilar to items from an alternative category.
The EGCM (Lamberts, 1995; 1998; and Freeman,
1999; and Brockdorff, 1997) has been used to predict
the effect on categorization performance of imposed
response time limits. However, both models could
conceivably be used for either purpose.

There are two important points to be made about
these studies. Firstly there has been little empirical
attempt to isolate either the decision-making or the
perceptual processing aspects of categorization. Any
aspect of processing before the response is made could
be affecting response time as measured by the RT
measurements. Similarly, in restricting the time

available to make a response (e.g. Lamberts 1995;
1998) it could be the restriction of time available for
either or both of the putative stages which affects
performance. Yet the data are interpreted in a manner
which ascribes all temporal observations (whether
about the effect of time constraint or the time taken to
make a response) to one stage of categorization or the
other. Secondly, both Lamberts (1998) and Nosofsky
and Palmeri (1997) have acknowledged the potential
temporal importance of “other” stages of
categorization, but treat these as separate independent
additions, ignoring the different ways in which they
may interact. Lamberts (1998) suggests that the models
may be “complementary”. However, in the same paper
he exemplifies a category structure designed to
differentiate between the EGCM and EBRW, and
applies the two models as direct competitors.

Lamberts and Freeman (1999) carried out a study
manipulating the time available for perceptual
processing time alone, imposing no restriction on the
subsequent time available for a decision. After various
intervals, stimuli (with 4 binary dimensions - after
Medin and Schaffer, 1978) were replaced by pattern
masks assumed to interrupt perceptual processing (e.g.
Eriksen 1980). We have used and extended Lamberts’
and Freeman’s strategy for disambiguating the 2 stages.
It was also hoped that a specific category crossover
obtained by Lamberts and Freeman (1999) might be
understood in more detail in terms of perceptual
processing and decision making. Lamberts and
Freeman’s participants were taught to assign each of a
set of 9 stimuli to one of two categories. The category
structure (see table 1) was designed so that if a certain
stimulus (stimulus 5) has been only partially processed,
the EGCM predicts that it will actually be assigned to
the other (wrong) category. However, if all the
dimensions of the stimulus have been sampled, then the
correct category assignment should be made. The
overall purpose was to test empirically the common
sense notion that both perceptual processing and
decision-making are likely to be time dependent.

Method
Participants and Apparatus
32 Cambridge University undergraduates took part. The
experiment was performed on an Acorn Risc PC 600
computer with a 14 inch colour monitor. Participants
viewed the screen from a distance of approx. 0.6 m.
Stickers marked A and B were placed respectively over
the keys X and >. on the keyboard.

Stimuli
The stimuli, based on those of Lamberts and Freeman
(1999) were pictures of colored table lamps consisting
of 4 binary dimensions: a gold-colored base which was
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either conical or composed of a stack of disks, a gold-
colored stalk which was either thin or thick, a purple-
colored shade which was either conical or
hemispherical, and a grey-colored top which was either
hemispherical or cylindrical. Each picture was
approximtely 55mm high and 27mm wide. The
categories into which lamps were divided are shown in
Table 1. There were also five pattern masks (see test
phase). These were approximtely 60 mm high and
32mm wide.

Design
Stimulus display time (henceforth “display time”) was a
within-subjects variable with three levels of 33ms,
75ms and 150ms. The deadline (measured from
stimulus onset) by which to make a category decision
(“decision deadline”) was a between-subjects variable
with two levels of 600ms and 1350ms.

Table 1. The category structure for the table lamp stimuli
(taken from Lamberts and Freeman, 1999).
Base: 1 = conical; 0 = stacked
Stalk: 1 = thin; 0 = thick
Shade: 1 = conical; 0 = hemispherical
Top: 1 = hemispherical; 0 = conical

Stimulus
Cate-
gory

Base Stalk Shade Top

1 A 0 0 0 1
2 A 0 0 1 0
3 A 0 1 0 0
4 A 1 0 0 0
5 A 1 1 1 1

6 B 1 1 1 0
7 B 1 1 0 1
8 B 1 0 1 1
9 B 0 1 1 1

Procedure
The experiment consisted of two parts. In the first, the
training phase, participants learnt the category
membership (Table 1) of 9 lamps. In the second, the
test phase, they had to categorize these lamps into the
learned groups under time pressure with no feedback
given. It was the results of this second phase which
were of primary importance.

Training phase Participants were trained with the
stimuli appearing sequentially in blocks of nine. Each
lamp appeared on the screen until it was assigned to a
category by pressing the “A” or “B” key. Auditory
feedback was given: a short high beep indicated a
correct category assignment and a long low beep
indicated an incorrect one. One second after the
response was made, the next stimulus appeared on the
screen. Training trials were continued either until 2
consecutive blocks (i.e. 18 lamps) were correctly

categorized (in which case the participant continued
with the rest of the experiment) or until 100 blocks
were completed (in which case the experiment was
terminated). Each stimulus was presented once in each
block, and stimuli were presented in random order.

Test phase After two consecutive correct blocks,
instructions for the test phase appeared on the screen.
At the start of the test phase there was a practice run of
9 stimulus presentations. Each stimulus was selected
from the 9 at random, with a display time randomly
selected from the three possible. They were presented
for categorization in the same manner as those in the
test phase. Following the practice were 6 “real” blocks
of 108 stimuli. Within each block of 108, each of the 9
stimuli was presented 12 times, 4 at each display time.
Within these constraints the order of presentation was
random. After the applicable stimulus display time, the
lamp was replaced by one of the 5 pattern masks. The
participant then had the remainder of the decision
deadline time in which to make a category response.
Assuming this response was given, the screen cleared
and after one second the next trial began. No feedback
was given in the test phase.

If the participant responded before the pattern mask
appeared, there was a long low beep, the screen was
cleared and “ANTICIPATION!” was displayed. If a
response had not been made by the decision deadline,
there was a long low beep, the screen cleared and
“TIME OUT!” was displayed on the screen. If a key
other than the designated A or B key was pressed, the
screen was cleared and “INVALID KEY!” was
displayed. Each of these messages remained for 2
seconds before the screen cleared. After a one second
delay the cross appeared to signal the start of the next
trial. Any of these errors stopped the trial and its data
were discounted.

Results

Levels of significance are taken to be p < 0.05 unless
otherwise stated, and are reported after the Huynh-Feldt
correction for sphericity, where appropriate.

Lost data
Of the 32 participants commencing the training phase,
23 learnt the categories within the available 100 blocks
and progressed to the test phase, 12 from the 600ms
deadline condition and 11 from the 1350ms condition.

For each trial in the test phase, data could be lost in 3
ways: an invalid key press, a “timeout” or an
“anticipation”. The mean and standard deviation of the
data points lost by a subject (over the 648 trials) was
50.75 ± 37.07 (7.83% of all trials).
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Overall, 6.82% of the 648 trials were timed out. A
two-way ANOVA showed there was a significant effect
of decision deadline on number of timeouts, F(1, 21) =
5.08, p < 0.05, but that the effect of perceptual
processing time was not significant F(2, 42) = 1.02, p >
0.1. In the 600 ms deadline condition, 9.13% of trials
were timed out and in the 1350ms condition 4.29%
were timed out. Overall, 1.08% of trials were lost as
anticipations. Neither the effect of display time, F(2,
42) = 3.52, p > 0.05, or decision deadline, F(1, 21) <
0.01, p > 0.05, was a significant factor in the number of
anticipations observed. Only 2.01 x 10 –4 % were lost as
invalid key presses. The overall proportion of useable
trials was 92.09%, in the 1350ms condition 96.64%,
and 89.75% in the 600ms condition. Two separate
analyses were performed: one including all legitimate
trials, and one in which certain trials were cut out. The
greatest number of time outs from any participant was
172, the greatest number of anticipations 64. Therefore,
taking the anticipations to be the fastest of the
participants’ responses, and the timeouts the slowest,
from every participant’s results the fastest 64 and the
slowest 172 trials were eradicated from the second
analysis. This means that only 412 of each person’s 648
trials were used in the restricted data set. Reported
results are from the former analysis, but all the reported
main effects remained significant, and reported trends
were in the same directions when trials were removed.

Accuracy
There were significant effects on overall accuracy, of
display time, F(2, 42) = 15.69, p < 0.001, of decision
deadline, F(1, 21) = 5.805, p < 0.05, and of stimulus,
F(8, 168) = 2.14, p < 0.05. There was also a significant
interaction between the display and deadline variables,
F(2, 42) = 6.73, p < 0.01. Mean accuracy in each of the
6 decision deadline/display time combinations is shown
in Figure 2. Mean accuracy was significantly above
chance (proportion correct 0.5) in both the longer, t(10)
= 3.91, p < 0.005, and shorter, t(11) = 5.395, p < 0.001
(both 2-tailed tests), deadline conditions. However, the
effect of display time was only significant for the longer
decision deadline, F(2, 20) = 17,72, p < 0.001 (shorter
deadline, F(2, 22) = 1.16, p > 0.3).

Stimulus 5 A planned contrast showed accuracy on
stimulus 5 to be significantly different to accuracy on
all of the other stimuli. F(1, 21) = 10.197, p < 0.005.
For stimulus 5 alone, decision time was a significant
factor in accuracy, F(1, 21) = 10.09, p < 0.01. However,
display time was not significant: F(2, 42) = 0.28, p >
0.5. In the 1350ms condition, overall mean accuracy
(0.59, s.d. 0.12) was significantly above chance, t(10) =
2.49, p < 0.05, one-tailed. For the shorter (600ms)
decision deadline, mean accuracy (0.40, s.d. 0.16) was
significantly below chance, and this trend approached

significance, t(11) = 2.15, p < 0.05 one-tailed. This is
shown in Figure 1.

Figure 2: Accuracy for all stimuli

Response latency
There are two feasible ways of measuring response
latency: from the onset and from the offset of the
stimulus. When assessing the effect of decision
deadline, F values are the same for both measurements,
as response times measured from offset are simply
calculated by adding a constant, the size of which is
balanced across decision deadline conditions. However,
the effect of display time in determining response
latency may differ depending on which method of
measurement is used. As would be expected, there is a
significant effect of decision deadline on response
latency (as measured from stimulus onset or offset),
F(1, 21) = 63.90, p < 0.001. There is also a significant
effect of display time on response latency from stimulus
offset, F(2, 42) = 95.99, p < 0.001 and onset, F(2, 42) =
5.609, p<0.01. The effect of stimulus on response time
is also significant from offset and onset, F(8, 168) =
2.95, p < 0.05. There is no significant interaction
between decision deadline and display time on response
latency measured in either way. Mean response time
(measured in both ways) in each of the display/deadline
combinations is shown in figures 3 (from stimulus
onset) and 4 (from stimulus offset).
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Figure 1: Stimulus 5 Accuracy
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Stimulus 5 Response time for stimulus 5 does not
significantly differ from that for the other 8 stimuli, F(1,
21) = 1.98, p > 0.15.

Discussion

It was apparent that participants adapted their response
times to meet the deadlines, and that the larger mean
response time with the longer deadline was not due
simply to fewer of the responses being timed out.
Furthermore it was apparent that changes in accuracy
for the two response deadlines were not due to the fact
that longer responses were more accurate and that these
tend to be timed out more in the shorter deadline
condition. This consideration is an important one for
procedures in which trials are discounted on the basis of
responses taking too long or short a time. However, it is
frequently overlooked even when a timeout procedure
is in place (e.g. Lamberts and Brockdorff, 1997).

To summarize the main effects on categorization
accuracy, it was discovered that both the time available
to perceptually process stimuli, and the time available
to make a decision, significantly affected the accuracy
with which stimuli were assigned to categories, even
when the effect of the other phase is controlled for. In
short this supports the intuitive notion that both are
markedly time dependent and that a complete temporal
characterization of categorization would require
consideration of both.

However, a notion requiring further consideration is
that participants do not always use the full stimulus
display time to perceptually process the stimulus (also
suggested by Lamberts and Brockdorff, 1997). As
described by the EGCM, decision processes comprise a

fixed-duration stage after completion of perceptual
processing. If it is assumed that the stimulus is being
processed right up until the mask appears, then such a
theory would have problems accounting for our
empirical effects of decision time. However, it is
possible that at the shorter decision deadline, the time
spent on perceptual processing is reduced in order that
more time be spent on a decision, albeit based on
incomplete visual information. Under this assumption it
is possible that the EGCM alone could predict the
effects of decision making time on accuracy. This
account is also compatible with some other findings of
ours. For example there was a significant interaction
between decision deadline and display time in their
effects on accuracy. Reference to Figure 1 indicates that
the effect of increasing display time is more marked in
the longer decision deadline condition. Perhaps it is
only in this condition that use is made of increases in
available perceptual processing time.

There was an apparent crossover in the category
assignment of stimulus 5, but the circumstances
responsible for this require further consideration.
Lamberts and Freeman (1999) found that for shorter
presentation times – i.e. when less time is available for
perceptual processing – stimulus 5 was assigned to the
wrong category, and for longer presentation times it
was assigned correctly. This can be explained by
assuming that restriction of perceptual processing time
causes the decision stage of categorization to occur, in
an identical fashion, but on the basis of an incomplete
perceptual representation. In terms of the EGCM, if
only some of the dimensions of stimulus 5 have been
sampled, mis-categorization is likely (see table 1).
However, contrary to the EGCM’s basic predictions,
our results indicate that it was restriction of the overall
time in which to make a decision that caused the
crossover. In fact, the time available for perceptual
processing was not a significant factor in the
categorization of this stimulus. Could it be that decision
processes are responsible? As before, perhaps
participants just cut all their perceptual processing
times shorter for the shorter decision time than the
longer one. If this is the case, then given that there was
no significant effect of display time on accuracy for
stimulus 5, an intriguing possibility is that processing
time was cut off before 33ms for this stimulus.

Therefore our results do not rule out the possibility
that decision time is constant across conditions, as
assumed by the EGCM. Should it have been the case
that response latencies both from stimulus onset and
stimulus offset had increased as a function of display
time, such an account would encounter difficulties. This
result would be incompatible with the notion that at
longer display times, decision processes begin before
the stimulus is replaced by a mask. However, this is not
the case. When measured from stimulus onset, response
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Figure 4: Response Latency from offset
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latency increases as a function of display time, whereas
when measured from offset, latency decreases as a
function of display time.

Consider now how the EBRW could encompass the
response latencies observed. Assuming that perceptual
processing occupies a fixed time at the start of a trial, it
would be hard to say why latency from stimulus onset
significantly increases with increasing display time. If
one assumes on the other hand that perceptual
processing continues for as long as a stimulus is
present, this means that with more information (longer
perceptual processing), the random walk process takes a
shorter time. This makes conceptual sense, as
presumably more information means a less ‘wandering’
indicator in the random walk process. However, this
implies that a temporal perceptual aspect needs to be
added to the model as the time available to process a
stimulus influences the random walk. It is also hard to
see how the EBRW could predict a crossover in
stimulus 5 category assignment. Nosofsky and Palmeri
(1997) acknowledged that future work could address
the application of the random walk model to the effects
of different degrees of time restriction – to speed-
accuracy trade-offs. A simple way to do this is to
assume variations in the locations of response criteria.
Assuming that response criteria are simply closer to the
point of zero for shorter deadlines, this would make
responses more haphazard, bringing overall
performance closer to chance for all stimuli. This could
not encompass the crossover. To do that it would have
to be the case that the winners of the earliest races
caused the counter to walk towards the opposite
decision boundary, and that it is later walks which
cancel this out and predict the correct response.
However in the category structure used here, the stored
exemplar activated most strongly on presentation of
stimulus 5 will clearly be the memory trace of stimulus
5 itself. Conceivable modifications, such as suggesting
that an exemplar becomes inhibited for a period after
being retrieved, would therefore only make crossover
less likely.

A further point for consideration is that current
exemplar models’ view of the relationship between
perceptual processing and decision making stages is
likely to be a simplification (Lamberts, 1998), and it
may even be misleadingly artificial. For instance one
hypothesis consistent with our crossover could be that
information feeds through from the perceptual
processing to the decision-making stages in a cascaded
manner (McClelland, 1979). A cascade view would
hold that perceptual information feeds continuously into
the decision-making stages as it becomes available and
decision-making processes work continuously on the
basis of this. Perhaps at the shorter decision deadline
the decision-making stages are basing their outcomes on
incomplete stimulus representations: mis-assignment at

the shorter decision deadline suggests that some
dimensions have not been taken into account. Proposing
a delay between the perceptual processing of a
dimension and the point the information becomes
available for use by decision processes could also
encompass our cross-over. Thus for the longer decision
deadline, despite the same display durations, enough
dimensions have been taken into account for a correct
decision: during the difference between the durations in
response for the two deadline conditions, additional
evidence can be used by the decision components.

Existing exemplar models have provided valuable
insights into how perceptual and decision-making
components of categorization occur over time. Here, we
have explored empirically the intuitive notion that both
components have temporal aspects, and have briefly
considered how the phases may be related. Our data are
difficult to explain in terms of the EBRW. Certain
assumptions are needed about controlling the length of
perceptual processing, if the EGCM is to have much
success in accommodating them; perhaps future work
should concentrate on investigating the veridicality of
these assumptions. Consideration should also be given
to the possibility that the relationship between the two
phases is likely to be non-trivial, and that addressing
either individually could mask crucial intricacies.
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