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Abstract

Two experiments are reported that demonstrate rate of
learning in an allergy prediction task can be affected by
the predictive history of the cues involved, even if that
history relates to outcomes different to those being
currently learned about. Predictive history is defined here
as a cue’s prior status as either a good or a poor predictor
of outcomes. Our results are problematic for commonly
employed associative theories of human contingency
learning but also provide evidence for the sort of
associabilit y-change process envisaged by the
Mackintosh (1975) theory.

Introduction
In a contingency learning experiment, people are
presented with various cues that have some form of
predictive relationship to one or more outcomes. A
typical example is the allergy prediction task (e.g. Van
Hamme & Wasserman, 1994). In this task, the subject
is told which foods an imaginary patient has eaten,
predicts whether the patient will show an allergic
reaction as a result, and receives feedback on that
prediction. The nature of what has been learned can
then be probed in a number of ways. For example,
subjects may be asked for a numerical rating of the
strength of the relationship between cue and outcome
(e.g. Dickinson & Burke, 1996). Alternatively, one can
record the predictions made by subjects about a series
of test stimuli (e.g. Shanks, Darby, & Charles, 1998).

In a landmark paper, Dickinson, Shanks and
Evenden (1984) suggested that human contingency
learning might be explicable in terms of well-
established theories of animal learning. They were,
however, relatively agnostic about the particular theory
to be employed, suggesting the Mackintosh (1975),
Pearce and Hall (1980), and Rescorla and Wagner
(1972) theories as likely candidates. As the number of
experiments on human contingency learning has
increased, so has the list of candidate animal learning
theories. Whilst the following is by no means
exhaustive, the use of Pearce' s (1987) configural theory
(e.g. by Shanks, Charles, Darby, & Azmi, 1998), a
modification of Wagner' s (1981) SOP model
(Dickinson & Burke, 1996) and modifications of the

MKM model (McLaren & Mackintosh, 2000), are three
notable examples.

It is possible to identify two main themes in
the empirical investigation of associative learning
theories of human contingency learning. The first is to
provide support for the notion that associative learning
theories provide a distinct and superior account of the
data to that provided by normative accounts of the type
proposed by, for example, Cheng and Novick (1992).
Shanks (1995) provides a review of the first decade of
research on this issue. This theme is not heavily
represented in the current article, primarily because we
consider normative and associative accounts to be
different levels of explanation rather than directly
competing accounts. Nevertheless, normative theorists
may wish to consider how the results we report can be
accommodated by their theories.

The second main theme (in the empirical
investigation of associative learning theories of human
contingency learning) is to attempt to reject some of the
many competing associative accounts that have been
proposed. For example, Rescorla and Wagner (1972),
Pearce and Hall (1980), and Pearce (1987) may all be
rejected in their original form on the basis that a
cue→outcome association can be modulated in the cue' s
absence by training on a different cue with which it was
previously paired. Evidence of such retrospective
revaluation comes from a number of studies (e.g.
Dickinson & Burke, 1996; Le Pelley & McLaren, 2001;
Shanks, 1985) but there is no process by which it can
happen in the aforementioned theories. Further
problems arise from evidence that human contingency
learning is more resistant to retroactive interference
than most associative accounts would predict (Shanks,
Darby et al., 1998).

This second theme - the rejection of specific
associative accounts - continues in the current paper.
We report a contingency learning experiment whose
results appear to create further problems for many of
the aforementioned theories. The topic of investigation
is how a cue' s prior status as either a good or a poor
predictor affects the rate at which it forms associations
in future.

Interest in this question dates back at least as
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far as Lawrence’s (1949) demonstration that learning of
a successive brightness discrimination shows positive
transfer to a simultaneous brightness discrimination.
Lawrence maintained that this result must be due to
increased attention to the stimuli i nvolved, although
that interpretation is debatable (see Seigel, 1967).
Subsequent investigations tended to concentrate on
positive transfer to different stimuli on the same
dimension. For example, in the phenomenon of transfer
along a continuum, training on an easy discrimination
(e.g. black vs. white) can facil itate learning of a
diff icult discrimination (two shades of gray) on the
same dimension (e.g. Lawrence, 1952; Mackintosh &
Little, 1970; Pavlov, 1927). It is also the case that
shifting to a discrimination within the same dimension
is easier than shifting to a discrimination on a different
dimension (Shepp & Eimas, 1964; Wolff , 1967).

In the current experiments, we introduce a
novel design that returns to the issue of the predictive
history of specific cues. The basic design is summarized
in Table 1. In phase one, all subjects are taught that
each of the eight cue pairs is reliably associated with
one of two different allergies. The cues shown in bold
(A, B, C and D) are always paired with the same
outcome and are therefore perfectly predictive of the
type of allergic reaction. The cues shown in italics (V,
W, X and Y) are paired equally often with each of the
two outcomes and are therefore non-predictive of
allergy outcome.

Table 1: Experimental design

Phase One Phase Two
Predictive group

AB → 3, CD → 4        Familiar

KL → 3, MN → 4        Novel

AX → 1
BX → 2
AY → 1
BY → 2

CV → 1
DV → 2
CW → 1
DW → 2

Non-predictive group
XY → 3, VW → 4      Familiar

KL → 3, MN → 4      Novel

In phase two, subjects are taught about two
compounds whose components were previously
experienced in phase one (familiar compounds). They
are also taught about two compounds whose
components were not previously experienced in phase
one (novel compounds). There are two between-subject
groups in phase two, the predictive history group and
the non-predictive history group. Note that phase two
employs different allergy types to phase one, and that
all i ndividual cues and their compounds are perfectly
predictive of these novel outcomes. The two between-
subject groups differ only in the cues' history of
predictiveness with previous allergy types.

We predicted that the rate of learning in phase

two would be higher for the predictive group than the
non-predictive group. We hypothesized that subjects
would infer from the cue' s history in phase one that it
was either a good or poor predictor. This, in turn, would
lead to accelerated learning towards previously good
predictors and/or retarded learning towards previously
poor predictors in phase two. Whilst this idea seems
intuitively plausible, such an effect is not predicted by
the associative theories most commonly applied to
studies of contingency learning in humans. For
example, Rescorla and Wagner (1972) and Pearce
(1987), the two most commonly applied associative
theories, represent the predictive history of cues solely
by the associations formed between cue representations
and outcome representations. The fact that different
outcomes are used in our two phases would seem to
constrain both theories to predict no effect. If one
allows for generalization from the outcomes of phase
one to the outcomes of phase two, this does not improve
matters as each pair of cues in phase two seems likely
to evoke representations of outcomes one and two
equally. For example, the cue pair AB evokes both
outcome 1 because of the AX and AY trials, and
outcome 2 because of the BX and BY trials.

Our design also defeats explanation based on
the formation of associations between different cues as
there are no reliable cue-cue pairs in phase one. This is
relevant to, for example, the salience change process
proposed by McLaren & Mackintosh (2000) which
relies on the formation of cue-cue associations. Salience
change processes of this nature therefore do not allow
one to predict a difference between our two groups.

Another important aspect of our design is that,
in phase one, each trial involves one cue that is
perfectly predictive and another that is entirely non-
predictive. This causes problems for theories (e.g.
Pearce & Hall , 1980) that assume rate of learning is
determined by the predictabili ty of the compound rather
than of the individual cues. Such theories would predict
no difference between our two groups.

In summary, if the predictive group learns the
phase-two discrimination in fewer trials than the non-
predictive group then this would demonstrate an
intuitively plausible predictive history effect under
conditions where many common theories of human
associative learning seem constrained to predict no
effect. Such a demonstration therefore seems of some
theoretical importance.

Experiment 1

Method

Subjects and materials The subjects were 30 student
volunteers from the University of Exeter. The
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experiment was run on a Pentium III PC with 17"
monitor. Subjects were tested individually in a quiet
cubicle and the monitor was positioned about 80cm in
front of them. Responses were collected via a standard
two-button mouse. The cue names used were: potatoes,
beans, bread, milk, ice cream, oranges, apples, bananas,
sprouts, sweetcorn, mushrooms, carrots, pasta,
tomatoes, garlic, onions. The allergy words used were:
itch, rash, nausea, dizzyness. The allocation of cue
words and allergies to the logical design presented in
Table 1 was determined randomly for each subject. The
large number of cues and outcomes in our design makes
a counter-balanced allocation of cues to the logical
design impractical.
Procedure Subjects were presented with on-screen
instructions that asked them to take the role of an
allergist treating an allergic patient. They were told that
their task was to predict which allergy the patient would
develop if they were exposed to the cues shown.

On each trial, the two cue words were
presented towards the top of the screen and were
horizontally aligned. The two allergies appropriate for
the phase (i.e. allergies 1 and 2 for phase one, allergies
3 and 4 for phase two) were presented towards the
bottom center of the screen and were vertically aligned.
In the center of the screen, a large rectangle contained
the phrase "Please state your diagnosis".

Subjects indicated their diagnosis by clicking
on one of the two allergy words and then clicking an
"OK" button at the bottom right of the screen. Feedback
was provided by the "state your diagnosis" rectangle
turning red and displaying the word "false" or turning
green and displaying the word "correct". A small blue
arrow indicated the correct prediction by pointing to the
appropriate allergy. The subject moved on to the next
trial by clicking on the feedback rectangle.

The eight trial types for phase one (see Table
1) were presented sequentially and in a random order.
Trial order randomisation was via eight-item blocks,
each block containing exactly one instance of each trial
type. Ends of blocks were not signalled to subjects.

Training was to criterion - once the subject had
reached a criterion of two consecutive errorless blocks,
they moved on to phase two. Phase one was also
terminated if a subject completed 240 trials. At the
beginning of phase two, subjects were told they were
moving on to a second patient whose allergies were
different. The four trial types appropriate to the
subject's group (see Table 1) were then presented
sequentially and in a random order. Trial order
randomisation was via eight-item blocks, each block
containing exactly two instances of each trial type. The
phase two procedure was otherwise identical to phase
one, with training to the same criterion and termination
of the experiment after the same number of trials.

The left-right position of cue words was

randomly determined for each trial and subject. The
position of allergy words was randomly determined for
each phase and subject.

Results and discussion
Six subjects failed to reach criterion in phase one and
hence were excluded from all analysis. A Type 1 error
rate of 5% (α = .05) was used for all statistical tests.

Subjects in the predictive condition took a
mean of 10.6 blocks to reach criterion in phase 2, whilst
subjects in the non-predictive condition took a mean of
6.5 blocks. This effect, whose trend is opposite to our
predictions, did not approach significance, t(22) = 0.98

Faced with this absence of information, we
derived the following post-hoc hypothesis: Given that
all cues are fully diagnostic in phase 2, it would seem
likely that if there are any effects of predictive history
they would be easiest to detect early in phase 2. We
defined “early” as the first block of phase 2.

Figure 1 shows, for each condition, the number
of famili ar and novel stimuli responded to correctly in
the first block of phase two. Analysis of variance with
one between-subjects variable (predictive history) and
one within-subjects variable (novelty) confirms that the
observed interaction is reliable, F(1,22) = 8.56.

Predictive history does not approach significance as a
main effect, F(1,22) = 0.33, and the same is true for
novelty, F(1, 22) = 1.20. Performance on novel
compounds is significantly greater in the non-predictive
condition than the predictive condition, t(22) = 2.14.
The trend to greater performance on famili ar
compounds in the predictive condition is not
significant, t(22) = 1.44.

These data provide some indication that the
rate of learning in a human contingency learning task
can be affected by the predictive history of the cues
involved, even if that history relates to outcomes
different to those currently being learned about.
However, a critic might justifiably point to at least three
shortcomings. First, there is no reliable effect of
predictive history on blocks-to-criterion. Second the
analysis of block 1 does not reveal any significant effect
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Figure 1: Mean number of correct responses in the
first block of phase two of Experiment 1.
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for famili ar compounds, only for novel compounds.
Third, the choice of block 1 as the unit of analysis,
rather than a smaller or larger sub-section of phase 2,  is
post-hoc and seems a littl e arbitrary. Further work was
therefore required to establish the validity of the
hypothesized predictive history effect.

Table 2. Design of Experiment 2.

Phase One Phase Two
Predictive group

AB → 3, CD → 4      Familiar

GH → 3, IJ → 4      Novel
KL → 3, MN → 4
OP → 3, QR → 4

AX → 1
BX → 2
AY → 1
BY → 2

CV → 1
DV → 2
CW → 1
DW → 2

Non-predictive group
XY → 3, VW → 4     Familiar

GH → 3, IJ → 4     Novel
KL → 3, MN → 4
OP → 3, QR → 4

Experiment 2
In our second experiment, we attempted to make phase
two more difficult by increasing the number of novel
compounds seen by the subject to six. Table 2 shows
the modified design. We hypothesized that this design
would increase the likelihood of finding a predictive
history effect as indexed by blocks-to-criterion as it
would slow down learning in phase two. One likely
side-effect of such a change is that any effects that may
occur early on in phase 2 would become harder to
detect as subjects would be nearer chance (due to the
increased difficulty).

Method
Subjects and materials The subjects were 51 student
volunteers from the University of Exeter. Subjects were
tested in groups of up to 16 using a suite of identical
Pentium 4 PCs with 17” monitors. Each computer and
subject was positioned in a different, semi-enclosed
cubicle in a manner such that the subjects could not
observe each other. The cue names used were: plum,
dust, pear, apple, grapefruit, lemon, lime, perfume,
tangerine, grape, avocado, peach, pollen, melon,
orange, turnip, parsnip, beetroot, carrot, paint. The
allergy words used were: itch, rash, nausea, dizziness.
The allocation of cue words and allergies to the logical
design presented in Table 2 was determined randomly
for each subject, within the constraints that a) all cues in
phase 1 were fruit, b) each allergy in phase 2 was
associated with one novel compound of two fruits, one
novel compound of two vegetables, and one novel
compound of two non-foods. These constraints mean
that subjects should be roughly comparable in terms of

how similar novel cues are to cues seen in phase one.
Procedure Subjects were famili arized with each of the
20 cue words by presenting each of the 190 possible
pairs of cues in turn and requesting a similarity rating
for each pair. The rating requested ranged from 1 (“not
similar” ) to 9 (“very similar” ). The task was self-paced
and order of presentation was randomized for each
subject. The allergy prediction task immediately
followed. The procedure was identical to Experiment 1
apart from the greater number of novel cues in phase 2
(see table 2), and that phase 2 was terminated after a
maximum of 160 trials (rather than the 240 in
Experiment 1).

Results and discussion
Twenty subjects failed to reach criterion in phase one
and hence were excluded from all analysis. A Type 1
error rate of 5% (α = .05) was used for all statistical
tests.

In accordance with our hypothesis, subjects in
the predictive condition reached criterion in phase two
significantly more quickly, t(29) = 2.78, predictive
condition mean = 13.35 blocks, non-predictive
condition mean = 18.21 blocks. The effect remained
significant when assessed non-parametricall y, Mann-
Whitney U14,17 = 60. These data provide further support
for the idea that rate of learning can be affected by the
predictive history of the cues, even if that history relates
to outcomes different to those currently being learned
about.

We also analyzed proportion of correct
responses over the first sixteen trials of phase 2. This
corresponds to the sub-section of the data analyzed for
Experiment 1 in the sense that it includes the first two
occurrences of each trial type in phase 2. It is also the
largest data set over which proportion correct can be
calculated in an unbiased way due to our criterion-
determined termination of phase 2 (from trial 17
onwards, some subjects may have completed the
experiment). However, analysis of variance failed to
reveal any significant main effects of predictive history
, F(1,29) = 0.12, or stimulus type, F(1, 29) = 1.12, in
this data set. The interaction term did not approach
significance, F(1,29) = 0.16.

One reason for the absence of any significant
effects early in training may be that the increased
diff iculty of this variant of the task means that very
littl e is learned in the first two presentations of each
trial type.

General discussion
The present findings indicate that the rate of learning in
a contingency learning task can be affected by the
predictive history of the cues involved, even if that
history relates to outcomes different to those currently
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being learned about. This effect was demonstrated
under conditions where a number of commonly
employed theories of associative learning seem
constrained to predict the absence of an effect (e.g.
McLaren & Mackintosh, 2000; Rescorla & Wagner,
1972; Pearce, 1987; Pearce & Hall , 1980).

Le Pelley & McLaren (2003), using a  design
similar to and directly inspired by our procedure, have
subsequently demonstrated that a similar effect can also
be found if one employs rating scales rather than trials-
to-criterion as the dependent measure. Taken together,
their study and ours provide strong empirical support
for the reali ty of a predictive history effect in human
contingency judgments.

Le Pelley & McLaren (2003) also suggest a
mechanism for the production of such an effect based
on the Mackintosh (1975) theory of associative
learning. In this theory, associations are assumed to
form between each cue and outcome. Associative
strength changes according to the rule

∆VA = αA θ ( λ - VA ) (1)
where VA is the associative strength between cue A and
an outcome, αA  is the associabili ty of cue A, θ  is a
fixed learning rate parameter and λ is the limit of
associative strength. The cue-specific associabili ty
parameter α is not fixed; its value varies on each trial
according to the cue's predictiveness. Specifically, ∆αA

is positive if
 λ - VA  < λ - VX  (2)

and negative otherwise, where VX  is the sum of the
associative strengths of all cues other than A present on
the trial.

Applying the Mackintosh (1975) theory to our
experiment, phase one training should result in the
associabili ty of cues A to D being higher than the
associabili ty of cues V to Y because cues A to D
perfectly predict their outcome and so will acquire
greater associative strengths. This, in turn, will l ead to
VX being smaller than VA for predictive compounds and
equal to VA for non-predictive compounds, resulting in
associabili ty changes via Equation 2. In phase two, this
will result in the faster learning to famili ar compounds
in the predictive group than in the non-predictive group.
Such a trend is observed, albeit non-significantly, in the
first block of phase two of our Experiment 1 and could
plausibly underlie the effect, in our Experiment 2, that
the predictive group reaches criterion faster in phase
two than the non-predictive group. Kruschke (2001) has
recently proposed a model which, as he notes, is under
certain conditions strikingly similar to the Mackintosh
(1975) theory.

Whilst Le Pelley & McLaren’s result, our
trend with famili ar compounds in Experiment 1 and our
trials-to-criterion difference in Experiment 2 can all be
potentially explained by the Mackintosh (1975) theory,

an alternative explanation in terms of proactive
interference (Underwood, 1957) is also possible.

In phase one, cues are associated with outcome
1, outcome 2 or both. In phase two, these pre-existing
associations might proactively interfere with the
formation of associations in phase two, hence retarding
the rate of learning. The non-predictive group is
retarded more than the predictive group because, in the
former, each cue has two potential sources of
interference (e.g. X→3 receives interference from X→1
and X→2) whilst, in the latter, each cue has just one
source of interference (e.g. A→3 just receives
interference from A→1). The validity of this argument
rests on the assumption that it is the number of sources
of interference, rather than the number of times each
source occurs, which is the dominant effect. If one
assumes that strength of a memory is an increasing,
negatively accelerated function of number of
presentations then number of sources will dominate
number of presentations. An increasing, negatively
accelerated function is consonant with the assumptions
of most associative learning theories.

This proactive interference explanation does
not appear to account for the effect we observed for
novel compounds. In contrast, it seems possible that the
Mackintosh (1975) theory can account for this effect if
one employs a slightly more complex version of the
theory also discussed in the Mackintosh (1975) paper.

Mackintosh suggests that the change in
associative strength between a presented cue and an
outcome generalizes to other cues to the extent that they
are similar to the target cue. Specifically, in the special
case of an experiment with just two cues,

∆VB = SA,B αA θ ( λ - VA ) (3)
where VB is the associative strength of the cue changing
through generalization (cue B), and SA,B represents the
similarity between cue A and cue B. With regard to our
Experiment 1, two important aspects of our design need
to be underlined. First, the outcomes in phase two are
different to those in phase one. We assume this means
that VA

 is zero for all cues at the start of phase two.
Second, all cues in phase two are perfectly predictive of
their outcome so cues in phase two do not differ in the
λ - VA term of Equation 3. Finally, all cues are assumed
to be, on average, of equal similarity to each other due
to the randomized allocation of cue names to our
design. It is therefore only the αA term of Equation 3
that determines the extent to which the change in
associative strength between a presented cue and an
outcome generalizes to other cues. The αA terms for
cues are determined by their prior predictive history in
phase one.

In summary, the critical prediction of Equation
3 is that changes in associative strength in phase two
generalize more effectively from cues with high
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associabili ty than from cues with low associabili ty.
Therefore, KL and MN receive more generalized
change in associative strength from AB and CD in
group predictive than they do from XY and VW in
group non-predictive. Receiving more generalized
associative strength retards learning in this instance
because generalization will occur equally to cues with
the same outcome as the target cue and to cues with a
different outcome than the target cue. Under a variety
of performance rules, including the ratio rule, difference
rule and a winner-take-all system, adding an fixed
amount to all associative strengths reduces response
accuracy (see e.g. Wil ls, Reimers, Stewart, Suret, &
McLaren, 2000). One may therefore predict that the
novel compounds in our experiment will be responded
to less accurately in the predictive group than in the
non-predictive group which is, of course, what is
observed. Whilst generalized changes in associative
strength from KL and MN will also retard learning of
the familiar compounds AB, CD, XY and VW, the
amount of retardation is predicted to be equivalent in
both conditions. In summary, then, our effect with
novel cues, although based on a post-hoc analysis of the
data, nevertheless provides some evidence that may
favor the Mackintosh (1975) account over an account
based on proactive interference.

Thus far, the reader might be left with the
impression that, from the plethora of associative
accounts available, the Mackintosh (1975) theory is the
only adequate associative model of contingency
learning in humans. Such an impression would be
inaccurate due to the model’s inabili ty to account for
retrospective revaluation effects (e.g. Dickinson &
Burke, 1996) and for results that imply a role for
configural processing (e,g, Shanks, Charles et al.,
1998). Nevertheless, from the alternatives considered,
the Mackintosh (1975) theory seems to provide the
most adequate account of the sort of predictive history
effect demonstrated in the current experiments.
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