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Abstract

Rumelhart & Zipser's (1986) competitive learning

algorithm is an account of unsupcrvised learning and, as

such, might be considered a potential model of free

classification behavior in humans. However, selective

learning effects (e.g. Dickinson, Shanks & Evenden,

1984) suggest that human learning, ai least under

conditions of feedback, may be better characterized by

an error-correcting system. An experiment is reported

that provides preliminary evidence for the existence of a

selective learning effect in free classification.

Simulations indicate that Rumelhart & Zipser's algorithm

does not provide an adequate account of the behavior

observed, whilst an error-correcting variant of

competitive learning does.

Introduction

Free classification, or free sorting as it is also called, is

a procedure in which human participants are presented

with a set of stimuli and are asked to group them in any

way that seems sensible or reasonable to them (e.g.

Bersted, Brown & Evans, 1969; Rcgehr & Brooks,

1995; Wills & McLaren, 1998). It may be contrasted

with the more standard experimental task of category

learning via trial-specific feedback that has been the

dominant mode of enquiry into humans' categorization

abilities for the last fifty years (e.g. Bruner, Goodnow

& Austin, 1956; Medin & Schaffer, 1978; Wills,

Reimers, Stewart, Sure! & McLaren, 2000).

The study of categorization under conditions where

each decision receives immediate feedback from a

totally reliable source has allowed psychologists great

control over the structure of the categories participants

acquire. As a methodology, it has been successful in

broadening our understanding of the category learning

process. However, the level of feedback available in

such tasks seems higher than that available in many

real-world situations, begging the question of whether

what we have learned about the categorization process

will generalize to situations where the feedback is

absent or scarce.

An interesting parallel may be drawn with the sort of

connectionist systems that have been proposed for

learning in the presence or absence of feedback. For

example, Rumclhart & Zipser's (1986) competitive

learning model is an unsuperviscd system. It extracts

statistical regularities in the input to form categorical

representations, and does so in the absence of feedback.

In contrast, McClclland & Rumelhart's (1985) model is

a supervised system. It can be taught multiple

categories (cat vs. dog vs. bagel in their example) but

learns to categorize because each stimulus is

accompanied by an externally-provided category label.

One of the differences between these two models is

the nature of the weight-update algorithms they employ.

McClelland & Rumelhart (1985) employ an error-

correcting algorithm, where the size of the weight

change is proportional to the mismatch between an

external teaching signal and internal inputs. In other

words, learning only occurs when the system fails to

fully predict the teaching signal. Specifically,

1

where Aw,j is the change in the strength of the

connection from unit j to unit /, e, is the external

teaching signal to unit /, at is (he activity of unity, and i,

is the total internal input to unit /'. this being calculated

as

In contrast, Rumclhart & Zipser's algorithm does not

employ error-correction in this sense. Rumelhart &

Zipser use the internal input to determine which unit is

the "winner" and then change weights to the winning

unit by an amount proportional to the difference

between the current weight of that connection and an

asymptote1. Specifically, the change in weight from unit
j to the winning unit is

Rumelhart & Zipser (1986) also discuss a variant where

connections to the losing unit are also changed via Equation 3,

but with a much lower learning rate. The current article

concentrates on the "winner-only" version, although the

conclusions drawn arc valid for both variants.



where n is the number of active input units, and the

winning unit is the one with the highest internal input. It

is assumed in the current paper that active input units

have an activity of 1 and inactive input units have an

activity of zero.

Error-correction is assumed by some investigators to

be a fundamental aspect of human learning in the

presence of feedback, as evidenced by the phenomenon

of selective learning (see below). If human learning in a
free classification task fails to show evidence of

selective learning, concerns would arise as to the

generality of an empirical research program heavily

based on learning with feedback. On the other hand, if
selective learning is found to occur in free

classification, the sort of unsupervised system proposed
by Rumelhart & Zipser may not be an appropriate

model for free classification behavior.

Selective learning

Probably the best-known example of selective learning

is Kamin's (1969) "blocking" effect. Kamin's study

involved rats but, as will be discussed later, there is
now abundant evidence that corresponding effects can

also be found in human learning (with feedback).

Kamin taught hungry rats that pressing a lever would

result in food. Following this, pressing the same lever

whilst a noise was present resulted in a mild electric

shock. Unsurprisingly, rats learned to not press the

lever whilst the noise was present.

Next, the auditory tone was accompanied by a light

and pressing the lever whilst this tone-light compound

was present also resulted in mild shock. The rats

learned not to press the lever whilst the tone-light

compound was present.

Group
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N->Shock
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LN-»Shock

LN->Shock

Tcsl

L

L

Figure 1: Kamin's (1969) blocking experiment. "N" is

an auditory stimulus and "L" is a visual stimulus.

In the test phase, just the light was presented, and the

rats' behavior observed. The rats in the experimental

condition pressed the lever quite a lot, whilst control

rats (which had participated in stage two but not stage

one) pressed the lever very little indeed. The design of
this experiment is summarized in Figure 1.

The rats in the experimental group appear not to have

learned the relationship between light and shock even

though the control rats, which received an equal amount

of training with the light-noise compound, have learned

the relationship. Why might this be?
A number of animal learning theorists (e.g.

Mackintosh, 1975; Pearce & Hall, 1980; Rescorla &
Wagner, 1972) have essentially argued that it happens

because learning is driven by surprise. For the rats in

the experimental group, the shock is not a particularly
surprising event because it is predicted by the noise.

The rats therefore don't bother to learn about the light in

stage two. Similar effects have been demonstrated with

undergraduates using computer-based tasks, including

simple computer games (e.g. Dickinson, Shanks &

Evenden, 1984), stock market simulations (e.g.

Chapman & Robbins, 1990) and simulated medical

diagnosis tasks (e.g. Gluck & Bower, 1988).

As Rescorla and Wagner (1972) noted, the notion of

surprise-driven learning is well-captured by an error-

correcting learning rule such as the one give in
Equations 1 and 2. In fact, the learning theory they

proposed is basically a variant of this learning rule.

An error-correcting system reproduces the blocking

effect in the following way. For simplicity, consider

that there are three units - the noise unit, the light unit

and the shock unit. The external input produced by the

presence of a stimulus is 1, and the external input

produced by its absence is zero.

Initially, shock is not expected, so the link between

noise and shock, and light and shock, are small. During
stage one of the experiment, the strength of the link

between noise and shock increases and eventually

reaches I. In the second stage, noise, light and shock

are all present. However, the internal input to the shock
unit is already 1 because of the strength of the link

between the noise and the shock. Therefore, no weight

change can occur via Equation 1. The light does not

become associated with shock, even though it clearly

would in the control condition. Under the non-error-

correcting algorithm given in Equation 3, the

light-»shock association would reach an equivalent

level in both conditions.

Experiment

It is reasonably clear from previous research that

humans and other animals engage in selective learning

under conditions of trial-specific, informative feedback.

Do humans also display selective learning in a task
without such feedback? The experiment reported in this

paper represents a first attempt to address this question.

In our experiment, participants had to make up their

own categories, although they were constrained by the

fact they were only allowed two groups. Previous
research demonstrates that category learning can

proceed successfully in the absence of feedback (e.g.

Homa & Culticc, 1984; Wills & McLaren, 1998).



Our participants received intermittent, non-trial-

specific, feedback about their overall level of

performance following every 24 stimuli, in order to

maintain motivation and encourage adoption of the

experimenter-defined categories. We believe that such a

procedure is still properly described as "free

classification" as no single response can be considered

correct or incorrect. Situations where all forms of

feedback are entirely absent arc probably almost as rare

outside the laboratory as situations where feedback is

always immediate and trial-specific.

Abstract, novel stimuli were employed in this

experiment as we wished to study category learning

with adult participants - with such participants the

category learning process is probably complete or far-

advanced for most realistic stimuli.

Stimulus presentation was brief and followed by a

mid-gray mask. The time available for a decision was

also very limited. Both of these procedures were

employed to encourage participants to rely on relatively

non-analytic, similarity-based categorization processes,

rather than analytic, rule-based processes.

The basic design of the experiment is shown in Figure

2. The letters A to J each represent sets of features

present in the stimuli shown to participants.

In the first phase of the experiment, participants were

presented with examples from two different categories.

Examples from category 1 were created from a base

pattern that contained feature sets G and H. Examples

from category 2 were created from a base pattern that

contained feature sets I and J. Note that the labels

"category 1" and "category 2" are essentially arbitrary

in a free classification task - they could be reversed

without changing anything in the design or execution of

the experiment.

As Figure 2 illustrates, once the participant had

mastered the GH vs. IJ categorization they were

transferred to a second categorization. Participants

proceeded through all five categorizations in this way,

at which point the experiment was over.

The datum of central importance in this design is the

category to which the first stimulus presented in phase

five is allocated. The first stimulus is chosen because

subsequent decisions in phase five may be

contaminated by learning on previous phase five trials.

Phase

Cat. I

Cat. 2

1

GH

IJ

2

GE

IF

3

AB

CD

4

AE

CF

5

CE

AF

Figure 2: Design of the experiment. Letters represent

sets of features, hence category 2 in phase 3 contains

feature sets C and D.

The Rumelhart & Zipser system provides the null

hypothesis for this experiment because it predicts that

either key is equally likely to be used. It is perhaps not

immediately apparent why this should be. To elucidate,

one first needs to note that in each of the first four

phases, all features arc equally predictive of category

membership. This means that, for a system such as

Rumelhart & Zipser, in each phase learning should end

with two features (A and E in phase four) being equally

associated to one category representation, and two

features (C and F in phase four) being equally

associated to the other category representation. Hence,

the first stimulus presented in phase five will activate

both category representations equally and so the choice

of which category to place it into must be arbitrary.

This conclusion is confirmed by simulation in a later

section.

Why might one expect anything other than a null

result with this design? One possible reason would be if

people exhibited selective learning in free classification.

Note that, across phases 1 to 4, E and F only occur in

situations where the information they provide is

partially redundant. In phase 2 the stimuli can be

categorized on the basis of whether they contain G or I

features, a categorization already learned in phase one.

In phase four, the stimuli can be categorized on the

basis of whether they contain A or C features, a

categorization already learned in phase three. Hence,

through analogy to selective learning effects in tasks

with feedback, one might consider that E and F develop

little control over responding.

Method

Due to space limitations, we are unable to report the

pilot studies performed. Reports may be found in

McCooe(2000) and Zwickel (2001).

Participants and apparatus

Sixteen first-year Psychology students from the

University of Exeter participated to fulfil a course

requirement. Participants were tested in groups in a

quiet computer room. Stimulus presentation was on 17"

color monitors connected to Tiny Pentium III PCs

running the DMDX software package (Forster &

Forslcr, 2000, version 2). Responses were collected via

the left and right CTRL keys on standard PC keyboards.

Participants sat approximately 50cm from the screen.

Stimuli

Each stimulus was made up of 12 small pictures

(hereafter "elements") taken from a set of 72 that have

been used in a number of previous experiments (see

Jones, Wills & McLaren, 1998 for the full set). For any

given stimulus, the 12 elements were randomly

arranged in a square of 3 rows with 4 icons in each row,

and were surrounded by a gray rectangle outline 5.5cm

in height and 4cm in width. Figure 3 shows an example



stimulus. Throughout all five phases, no stimulus

contained more than one copy of any given clement.

Figure 3: An example stimulus

Each of the letters A to J in Figure 2 represent a set of
six elements. The assignment of elements to letters was

randomly determined for each of 8 pairs of participants,

with the remaining 12 elements (72 elements - 10 letter

sets x 6 elements per set) being used for practice trials.
In order to control for possible effects of differential

salience of the elements, one participant in each pair

received the stimuli described in Figure 2 whilst the
other received a design where E was transposed with A,
and F was transposed with C. Hence, the putatively

redundant elements were E and F for one member of
the participant pair, whilst they were A and C for the
other member. This means that any preference revealed

in phase five cannot be due to A and C elements being

more salient overall than E and F elements. To aid
clarity, all participant data is reported as if E and F were

the putativcly redundant elements.

The stimuli actually presented to participants were

generated by random distortion of the base patterns

described in Figure 2. Each element in a base pattern

was given a 10% chance of being replaced by a
randomly selected element from the other base pattern

(no element occurred more than once in any given

stimulus).

An example may be helpful. To create an AF stimulus

in phase five, the six A elements and the six F elements

were randomly arranged in the four-by-three grid of the
stimulus. Each element was then given a 10% chance of
being replaced by a randomly selected element from set

C or E. This method of stimulus construction produces

training examples which are composed predominately

of elements characteristic of a particular category but

which also exhibit considerable variability.

Procedure

The five phases described in Figure 2 were preceded by

some general written instructions and a brief practice

phase to familiarize participants with the procedure.

The experiment then proceeded in blocks of 24 trials.

On each trial, a stimulus was presented for 800ms and
followed by a mid-gray mask that was presented for
1200ms. If a response was not detected within 2000ms

of stimulus onset, the trial terminated with the message

"You responded too slowly, please speed up!" and the

participant was moved on to the next trial.

Each block comprised the sequential presentation of

24 stimuli, 12 from each of the two categories. At the

end of each block a short message appeared stating the
percentage of correct responses made by the participant

in that block, and that they needed to score more than
80% to proceed to the next part of the experiment.

Clearly, percent correct has a slightly different

interpretation in a free classification task to a task with
trial-specific feedback as the relationship between

categories 1 and 2 and the two response keys is

arbitrary. Hence, percent correct was computed under
the assumption that category 1 would receive a

particular response, and the resulting number was

subtracted from 100 if it was less than 50.

When a participant's score exceeded 80% they were

moved on to the next phase of the experiment, after
having been presented with the message "You did very

well! You are now entering the next phase". If
participants completed 10 blocks without ever reaching

the 80% criterion they were moved on to the next phase

with the message "You are entering the next phase as

you have been in the last block of this phase".

Results

Consider Figure 2 again. The central null hypothesis we

are attempting to reject is that, in the first trial of phase

five, a participant will be no more likely to categorize

AF using the response typically made to AE in phase

four than the response typically made to CF in phase

four. Similarly, they will be no more likely to

categorize CE using their typical AE response than their

typical CF response.

Of the 16 participants tested, 12 used the same

response key for CE that they had typically used for CF

(or the AE response key for an AF stimulus). Three

participants showed the opposite response, using the CF
key for an AF stimulus or the AE key for a CE
stimulus. The remaining participant could not be

described as having a preference for any in key in
response to AE or CF as they scored exactly 50%

across phase four. Treating this participant in the

manner that makes it hardest to reject the null

hypothesis, we can state that at least 12 participants

emitted the CF-»CE (or AE-»AF) response, whilst no

more than 4 participants emitted the opposite response.

Given the null hypothesis would predict 8 responses of

each type, the probability of the null hypothesis being

correct is smaller than 0.05, %\l) = 4.0. The effect is
also significant with an exact binomial test.

Participants completed a mean of 5.88 blocks in phase

one, 4.13 blocks in phase two, 6.12 blocks in phase

three, 5.75 blocks in phase four, and 5.56 blocks in
phase five. The number of participants failing to

achieve more than 80% correct in the five phases were

6,3, 7, 7 and 7 respectively.

qss



Discussion

The results of the current experiment appear to be

problematic for those that would attempt to explain free

classification behavior in terms of the competitive

learning algorithm of Rumelhart & Zipser (1986). The

model predicts no preference for which of the two

categories developed in phase four are used to

categorize the first stimulus in phase five, yet a clear

preference was observed. The direction of the

preference is that predicted if one assumes the presence

of selective learning in free classification

One possible defense of the Rumelhart & Zipser

algorithm is that its predictions were derived for a

situation where learning in each phase is essentially

complete before the next phase begins. Given the

relatively high numbers of participants failing to reach

criterion, it might reasonably be argued that asymptotic

predictions are not appropriate. Docs this make a

difference? This is one of the questions addressed in the

following section.

Modeling

We employed simulation techniques to more

thoroughly investigate whether Rumelhart & Zipscr's

(1986) competitive learning algorithm could accurately

reproduce the categorization preference observed in our

experiment. To this end we set up a network with 72

input units (one for each element) and 2 output units

(one for each category). Each input unit had a forward

connection to each output unit, and the connection

weights were initialized to small, random values.

One network simulation was performed for each

participant in the experiment, with weights being

initialized for each participant. The nature of the stimuli

presented to a simulated participant, and the order in

which they were presented, were determined by the

specific stimuli presented to a corresponding human

participant. After the presentation of each stimulus, the

winning category node was determined in the same

manner as Rumelhart & Zipser (1986). In other words,

it was determined by calculating the total internal input

to each unit, and selecting the unit with the larger total.

The weights from each of the input units to the winning

category unit were then updated in accordance with

Equation 3. The weights of the losing unit remained

unchanged.

The value of r) (the learning rate) employed by

Rumelhart & Zipser was 0.05. At this value, no

preference in the categorization response to the first

stimulus in phase five was found. Six simulated

participants made CF-»CE or AF-»AE responses

whilst six made the opposite response. The nature of the

response made by four simulated participants could not

be determined because in phase four they employed

both category nodes equally for both stimulus types.

Hence, unlike the human participants, the networks did

not display a categorization preference in phase five.

The Rumelhart & Zipser (1986) algorithm was

applied to our data with a wide range of learning rates

(0.001 to 0.009 in steps of 0.001, 0.01 to 0.09 in steps

of 0.01, and 0.1 to 0.9 in steps of 0.1). In no case did

the algorithm display a categorization preference in

phase 5.

An error-correcting competitive algorithm

We also attempted to simulate our result using an

algorithm that combined the error-correcting principle

of Equations 1 and 2 with the basic properties of the

competitive learning algorithm of Equation 3. On any

trial, the winning unit was determined in the same

manner as the Rumelhart & Zipser model. The weight-

update algorithm employed on each connection from an

input unity to the winning unit was

for connections from active input units and

n

m

for connections from inactive input units. In these

equations, T) is the learning rate, / is the total internal

input to the winning unit, n is the number of active

input units and m is the number of inactive input units.

The weights from input units to the losing unit are not

changed. This chimera of an algorithm is not equivalent

in behavior to either of its components but docs

preserve some of the properties of each.

Removing the weight update algorithm of Equation 3

from our previous simulation, and replacing it with the

algorithm described in Equations 4 and 5, we find a

dramatic change in behavior. Now, at a learning rate of

0.05, all 16 simulated participants make CF-»CE or

AF—>AE responses. In other words, the simulation now

reproduces the behavior observed in our human

participants, although the overall level of learning is

slightly higher in our simulation. A reliable preference

is found for a wide range of learning rates - from 0.01

to about 0.4.

Conclusion

The experiment reported in this paper provides

preliminary evidence that the ubiquity of selective

learning effects in tasks with immediate, trial-specific

feedback extends to some categorization tasks where

feedback is scarce and not trial-specific. To the extent

this phenomenon is found to be general to free



classification tasks, it casts some doubt on the adequacy

of certain types of competitive learning algorithms as

accounts of free classification behavior. In particular, an

algorithm suggested by Rumelhart & Zipscr (1986) was

found to have difficulty in reproducing the results

found. We suggest that a competitive algorithm which

includes some aspect of error-correction may be a more

appropriate account. One simple algorithm of this type

was described, tested, and found to be able to reproduce

our results.

The two main avenues of future research suggested by

the results and simulations in this paper are a)

investigation of the generality of selective learning

effects in free classification, b) consideration of

whether other unsuperviscd systems (e.g. Adaptive

Resonance Theory, Grossbcrg, 1976) are capable of

accounting for the results so far found.
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