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Many theories of learning and memory (e.g., connectionist, associative, rational, exemplar
based) produce psychological magnitude terms as output (i.e., numbers representing the
momentary level of some subjective property). Many theories assume that these numbers
may be translated into choice probabilities via the ratio rule, also known as the choice axiom
(Luce, 1959) or the constant-ratio rule (Clarke, 1957). We present two categorization experi-
ments employing arti®cial, visual, prototype-structured stimuli constructed from 12 symbols
positionedon a grid. The ratio rule is shown to be incorrect for these experiments, given the
assumption that the magnitude terms for each category are univariate functions of the
number of category-appropriate symbols contained in the presented stimulus. A connection-
ist winner-take-all model of categorical decision (Wills & McLaren, 1997) is shown to
account for our data given the same assumption. The central feature underlying the success
of this model is the assumption that categorical decisions are based on a Thurstonian choice
process (Thurstone, 1927, Case V) whose noise distribution is not double exponential in
form.

Many theories of learning and memory employ what we shall describe as psychological
magnitude terms. A psychological magnitude term is a continuous number that represents
the momentary level of some subjective property. For example, a magnitude term could
represent the subjective level of evidence for the belief that a stimulus is a member of a
particular category.

Theories that employ psychological magnitude terms include connectionist and
associative models, many exemplar-based theories, and some normative models. Any
connectionist model that relies on the activation of output representations to predict
responding is employing magnitude terms (e.g., Gluck & Bower, 1988; Kruschke,
1992; McClelland & Rumelhart, 1985; Seidenberg & McClelland, 1989). Similarly, the
end product of many associative learning models is a number (e.g., the sum of associative
strengths of cues present on a trial) that represents a prediction about level of responding
(see e.g., Pearce, 1987; Rescorla & Wagner, 1972; Wagner, 1981). Further, many theories
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that posit the storage of speci®c examples or instances are magnitude based. For example,
models that calculate summed similarity to stored instances in order to predict respond-
ing are magnitude based, with the summed similarity scores being the magnitude terms
(e.g., Estes, 1994; Kruschke, 1992; Lamberts, in press; Medin & Schaffer, 1978; Nosofsky,
1986). Finally, some normative modelsÐfor example, Anderson’s rational model (Ander-
son, 1991)Ðemploy magnitude terms.

All models whose output is a set of magnitude terms must specify how these numbers
translate into empirically testable predictions. In this paper we focus on a particular aspect
of this decision mechanism issueÐnamely, how are predictions about the probability of a
speci®c response derived when multiple responses are possible? An answer common to
otherwise disparate memory models is that one should invoke the ratio rule. The ratio
rule has been proposed by a number of authors (e.g., Bradley, 1954; Clarke, 1957; Luce,
1959) and goes under a variety of names, including the choice axiom (Luce, 1959) and the
constant-ratio rule (Clarke, 1957). For our current purposes, the ratio rule may be
expressed as

n i
P(i) 5 1n

S n j

j 5 1

where P(i) is the probability of choosing alternative i from n alternatives, and n j is the
magnitude term for the jth alternative. Theories that employ the ratio rule include
McClelland and Rumelhart’s model of word perception (McClelland & Rumelhart,
1981, Equation 7), their distributed memory model (McClelland & Rumelhart, 1985,
p. 174±175), Gluck and Bower’s model of category learning (Gluck & Bower, 1988,
Equation 3), Kruschke’s ALCOVE (Kruschke, 1992, Equation 3) and ADIT (Kruschke,
1996, Equation 10) models, and the generalized context model (Nosofsky, 1986, Equation
5). In some cases, the magnitude terms employed are transforms of the model’s output,
the most common transform being

n 5 e
ko

2

where o is the model’s output, and k is a scaling constant. Equation 1 implies that
magnitude terms are non-negative because negative terms would lead to probabilities
of less than zero. Amongst the advantages of the exponential transform of Equation 2
is that it ensures that magnitude terms are non-negative.

Although the ratio rule is commonly used to derive probability predictions from
magnitude-based models, theorists are seldom explicit about their reasons for choosing
this particular decision mechanism. Research designed speci®cally to test the ratio rule
provides some support for it, but this support is by no means de®nitive. For example,
Bradley (1954) and Hopkins (1954) tested the ratio rule in the context of pair-comparison
experiments. In a pair-comparison experiment there are n stimuli. For each possible pair
of stimuli, subjects are asked to choose one stimulus on the basis of some criterion (e.g.,
pick the sweeter of two ¯avours). These studies show that response probabilities in a
number of pair-comparison experiments are explicable in terms of the ratio rule. The
nature of the support provided by both studies is a demonstration that there is a set of
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magnitude terms (one for each stimulus), which, when substituted into the ratio rule,
produce predictions that do not differ signi®cantly from the observed data.

There are at least three problems with taking these studies as good evidence in
support of the ratio rule. First, no alternative theory is tested so there may be other
formulations that would work equally well for these data (e.g., the difference rule
previously investigated by Jones, Wills, & McLaren, 1998). Second, the pair-comparison
experiments examined typically involve only a few stimuli, and hence there are almost
as many free parameters as there are data points. For example, in one typical test
there were four different stimuli and hence four free parameters. There are six
possible pair comparisons of four stimuli and hence only six response probabilities
to be predicted. It would perhaps be surprising if the ratio rule did not pass a
goodness-of-®t test under such circumstances. The third problem is that support
for the rule is based on a null result. Given that the sample size in all tests is small,
the results may be due to a lack of power in the statistical test rather than the adequacy of
the ratio rule.

Another area of research designed to test the ratio rule concentrates on its prediction
that the ratio of any two choice probabilities is constant, irrespective of the total number
of alternatives. This property of the ratio rule allows it to predict full-set choice prob-
abilities from sub-set choice probabilities, and vice versa. For example, in an experiment
by Clarke (1957) the full-set decision was to determine which syllable had just been
presented in noise, given six alternative syllables to choose from. The sub-set decisions
involved determining the syllables presented given just three of the original six alterna-
tives. The full-set choice probabilities were used to derive predictions, via the ratio rule,
for the sub-set choice probabilities. These predictions were then compared with the
observed choice probabilities. Clarke concluded that the level of agreement between
predictions and observations was good, with 95% of predictions deviating by less that
0.1 from the observed data. A number of other studies have come to similar conclusions
for a variety of stimuli (e.g., Pollack & Decker, 1960). The problem in accepting such
studies as good evidence in support of the ratio rule is that, as in the analysis of pair-
comparison experiments, no alternative theory is considered.

One alternative to the ratio rule is to assume that people always choose the alternative
with the largest subjective magnitude term. This may seem unlikely because the prob-
ability of choosing an alternative in a speci®c situation seems constrained to be one (if its
magnitude term is the largest), or zero (if it is not). However, if subjective magnitude
terms are subject to random variation across different occurrences of the same stimulus
then probabilities other than one and zero can be predicted.

If the magnitude terms are assumed to have a Gaussian distribution then this alter-
native theory corresponds to Thurstone’s (1927) theory of judgement, with our term
psychological magnitude basically corresponding to Thurstone’s term discriminal process.
As has been noted previously (e.g., Luce, 1959, p. 56) the ratio rule and Thurstone’s
theory can often make very similar predictions. However, Yellott (1977) proved for situa-
tions involving three or more choices that the predictions of Thurstone’s theory and the
ratio rule can be equivalent if and only if the distributions employed in Thurstone’s
theory are double exponential. For a two-choice situation there are distributions other
than the double exponential that allow equivalence (e.g., an exponential distribution).
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Yellott’s demonstrations were for Case V of Thurstone’s theory, which assumes that all
distributions have the same variance.

Burke and Zinnes (1965) examined data from three different pair-comparison experi-
ments and concluded that Thurstone’s theory (Case V) predicted response probabilities
somewhat better than did the ratio rule. In contrast, Hohle (1966) concluded from his
examination of a different set of pair-comparison data that the ratio rule was superior.
Both papers rely on the quantitative difference between observed and predicted response
probabilities to discriminate between the two theoriesÐthey calculate c 2 goodness-of-®t
for each theory and favour the theory that generally has the lower c 2. Taken together, it is
unclear from these papers which theory is to be preferred.

In the current paper we report two experiments designed to test some predictions of
the ratio rule for situations other than a straightforward two-choice task. The predictions
of the ratio rule for these situations are unambiguous and amenable to experimental test.
However, these predictions are qualitatively different from those made by a model based
on the principles of Thurstone’s theory. This alternative model is the winner-take-all
(WTA) connectionist network proposed by Wills and McLaren (1997) and further inves-
tigated by Jones et al. (1998). Due to the length and complexity of exposition required,
details of this model and the predictions it makes are presented towards the end of the
paper.

A prediction of the ratio rule

The prediction of the ratio rule under test in our experiments concerns a three-choice
decision, a two-choice decision, and the relationship between the two. In the three-choice
decision, the subject is presented with stimuli to which three responses (A, B, C) are
potentially appropriate. The subject must make one of these responses to each stimulus.
In the two-choice decision the same stimuli are presented but one of the responses (A) is
disallowed by the experimenter. The subject must make one of the two remaining
responses. This procedure is an example of the full-set vs. sub-set manipulation described
earlier. The prediction under test depends on the assumption that the magnitude terms
for allowed alternatives are determined by the stimulus itself and are not affected by
whether a two-choice or three-choice decision is requested.

The prediction concerns the relationship between two measures. The ®rst measure is
the probability with which subjects make Response A in the three-choice decision. By
the ratio rule as stated in Equation 1, this probability is predicted to be

n A
P(A: A,B,C) 5 3n A 1 n B 1 n C

where n x is the magnitude term for response x produced by a given stimulus.
The second measure concerns the probability of making Response B to a given

stimulus in the two-choice decision and the probability of making Response B to an
equivalent stimulus in the three-choice decision. Speci®cally, the measure is the
difference between the two-choice and three-choice probabilities, expressed as a propor-
tion of the three-choice probability. Formally stated, this measure, which we will refer to
as q, is
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P(B: B,C) 2 P(B: A,B,C)
q 5 4P(B: A, B, C)

Under the ratio rule, and assuming type of decision does not affect magnitude terms, q is
predicted to be

[n B/(n B 1 n C)] 2 [n B/(n A 1 n B 1 n C)]
q 5 5n B/(n A 1 n B 1 n C)

which simpli®es to

n A
q 5 6n B 1 n C

Compare Equations 3 and 6. If n A is constant, then any change in q or P(A: A,B,C) must
be driven by a change in (n B 1 n C). Further, if n A is constant, any given change in (n B 1
n C) must produce the same direction of change in q as it does in P(A: A,B,C)Ðfor example, an
increase in (n B 1 n C) must lead to a decrease in q and a decrease in P(A: A,B,C). The
experiments presented in this paper test this prediction in the context of a category
learning experiment.

A speci® c prediction about category learning

Category learning is the task of learning the correct category label for each of a set of
presented stimuli. It has been the subject of a large number of studies, typically involving
stimuli that are visual, novel, and abstract, and a choice of labels that is limited to a few
pre-de®ned alternatives (e.g., Homa, Sterling, & Trepel, 1981; Hull, 1920; Nosofsky,
1986; Posner & Keele, 1968, amongst many others). Often the stimuli for a given category
are all distortions of a base pattern, which is sometimes referred to as a prototype.

Many theorists have proposed magnitude-based models to account for the data from
category-learning experiments (e.g., Estes, 1994; Gluck & Bower, 1988; Kruschke, 1992;
McClelland & Rumelhart, 1985; Medin & Schaffer, 1978; Nosofsky, 1986), and a great
many of these models (including all those just cited) employ the ratio rule to translate
magnitude terms into response probability predictions. The widespread use of the ratio
rule in models of category learning suggests that this might be an apposite procedure for
testing its predictions.

In the current experiments, subjects were presented with labelled examples from each
of three categories (A, B, and C) and were then asked to decide the category membership
of each of a set of unlabelled transfer examples. This general methodology has been
employed previously to investigate a variety of issues (e.g., Homa et al., 1981; Posner
& Keele, 1968). In our experiments, half the subjects were asked to decide whether each
transfer stimulus was an A, a B, or a C. The other half were asked, for an equivalent set of
transfer stimuli, whether each stimulus was a B or a C.

The stimuli employed were composed of a ®xed number of distinct features. All
transfer stimuli contained four Category A features and a varying number of Category
B and Category C features. The number of Category C features was constrained by the
equation
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xC 5 8 2 xB 7

where xC is the number of Category C features and xB is the number of Category B
features.

Subjects’ responses to these transfer stimuli were used to estimate generalization
functions. The generalization functions considered were the probability of making a par-
ticular response to a stimulus as a function of its similarity to a particular category
prototype. Our index of similarity to a category prototype was the number of features
from that prototype that the stimulus contained.

The speci®c generalization functions considered were P(A: A,B,C), P(B: A,B,C), and
P(B: B,C), as a function of similarity to the Category C prototype. The value of q as a
function of similarity to Category C can be calculated from the P(B: A,B,C) and P(B: B,C)
functions. Hence, the experiment was designed to provide an assay of how P(A: A,B,C)
and q change as a function of similarity to Prototype C (on our similarity index of number
of Prototype C features). What one can conclude from these empirical functions depends
on how the manipulation of number of A, B, and C features translates into changes in the
magnitude terms for Responses A, B, and C. The crucial assumption we make is that the
magnitude terms for a response are a univariate function of the number of corresponding
features in a stimulus. In other words, we assume that the mean magnitude term for
response y is solely determinable from the number of category y features in the presented
stimulus.

Under this assumption, our experiment is a test of the prediction of the ratio rule
derived in the previous section. The term n A will be a constant because number of
Category A features is constant. Therefore, any change in the observed values of
P(A: A,B,C) and q as a function of number of Category C features must be caused by
changes in (n B 1 n C). Further, a given change in number of Category C features must
result in the same change in (n B 1 n C) for the q function as for the P(A: A,B,C) function
because the same stimuli are being considered in both cases. The ratio rule therefore
predicts that the observed q and P(A: A,B,C) functions will show the same direction of
change over any interval of our ``number of Category C features’’ index. If our assump-
tion of univariate magnitude functions holds, the accuracy with which this index repre-
sents psychological similarity as assessed by, for example, multi-dimensional scaling of
identi®cation responses (see e.g., Shepard, 1957), is not important.

Further speci® c tests

In the current experiments, subjects get an equal amount of training on each of the three
categories, and the method of stimulus construction is identical for each category. Hence, it
might be reasonable to assume that eachcategory response has the same univariate magnitude
function: in other words, that the mean value for the magnitude term for response y is the
same for a stimulus containing x category-appropriate elements, irrespective of whether y is
A, B, or C. If one makes this assumption for Responses B and C then further predictions
can be derived from the ratio rule. First, q and P(A: A,B,C) must be symmetrical around xB

5 xC due to the relation between xB and xC given in Equation 7. Second, the shape of the q
and P(A: A,B,C) functions is determined by the shape of the magnitude function.
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Previous categorization experiments have shown that the ratio rule can be rejected if
magnitude is assumed to be a linear function of our similarity index, but not if it is assumed
to be an exponential function (Jones et al., 1998). These experiments employed similar
procedures and stimuli to those of our current experiments. If magnitude terms in the
current experiments are an exponential (or any monotonically accelerating) function of our
index then q and P(A: A,B,C) will be at a maximum where xB 5 xC. Where xB 5 xC, the
magnitude terms for Categories B and C will be equal. Any departure from xB 5 xC will
lead to an increase in one x term and a corresponding decrease in the other, due to the
relationship given in Equation 7. This will result in an increase in one magnitude term and
a decrease in the other. However, as the function is accelerating, the increase in magnitude
produced by a given change in x will be greater than the decrease in magnitude produced
by that change (Figure 1a may make this clearer: the thinner line is an accelerating func-
tion). This results in an increase in (n B 1 n C) and hence a decrease in q and P(A: A,B,C),
for any departure from xB 5 xC. This prediction is illustrated in Figure 1b.

Figure 1. (a) Two theoretical magnitude functions. The thinner line is a monotonically accelerating function.
For any point on this curve, the change in magnitude caused by an increase x in similarity produces a larger
change in magnitude (y9 ) than does a corresponding decrease in similarity (y). The converse is true for a
monotonically decelerating function (thicker line). (b) Illustration of the ratio rule’s predictions if Categories B
and C have the same monotonically accelerating magnitude function. (c) Illustration of the ratio rule’s predic-
tions if Categories B and C have the same monotonically decelerating function.
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Of course, the magnitude function may be neither linear nor monotonically accel-
erating. We consider one further class of magnitude functions in this paperÐmono-
tonically decelerating functions. If the magnitude terms for different categories are
identical and of this form then q and P(A: A,B,C) will be at a minimum where xB 5
xC. As for accelerating decay functions, any departure from xB 5 xC will lead to an
increase in one x term and a corresponding decrease in the other. However, because the
function is decelerating, the decrease outweighs the increase (see Figure 1, thicker line),
leading to a reduction in (n B 1 n C) and hence an increase in q and P(A: A,B,C). This
prediction is illustrated in Figure 1c.

EXPERIMENT 1

To summarize, our ®rst experiment had two phases. In the training phase, subjects
learned about the category membership of training stimuli. Each training stimulus
belonged to one of three categoriesÐA, B, or C. In the generalization phase that followed,
subjects were asked to determine the category membership of a different, transfer,
stimulus set. Half of the subjects were allowed to respond A, B, or C. For the other
half of subjects the response A was disallowed. In each group, the responses to transfer
stimuli were used to derive generalization probability functions (the probability of making
a speci®c response to a stimulus as a function of the difference between that stimulus and
the appropriate category prototype).

The central prediction of the ratio rule applied to any magnitude-based model of
categorization is that our measures P(A: A,B,C) and q derived from these generalization
probability functions will show the same direction of change over any given section of the
generalization function. This prediction is based on the assumption that the magnitude-
based model of categorization produces magnitude terms for each category that are
univariate functions of the number of category-appropriate features that the presented
stimulus contains. Subsidiary predictions about the shape of the q and P(A: A,B,C)
generalization functions, illustrated in Figure 1, can be derived by making further
assumptions about the nature of the magnitude functions.

Method

Subjects and apparatus

The subjects were 24 adults, mainly Cambridge University undergraduate students. The experi-
ment was run (by SR and NS) on two Acorn Risc PC computers in different, quiet cubicles. The
computers were connected to 14" colour monitors (Acorn AKF 60), which were placed at eye level
and about 80 cm in front of subjects. Responses were recorded via the ``X’’, ``B’’, and ``M’’ keys of a
standard PC keyboard. For the purposes of this experiment, the keys were re-labelled ``A’’, ``B’’, and
``C’’ using bold red letters against a white background. This resulted in three response keys near the
centre of the bottom row of the keyboard, separated from each other by one key and ordered ``A’’,
``B’’, ``C’’ from left to right.
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Stimuli

Each stimulus was a collection of 12 different small pictures (hereafter elements) in a 4.5-cm by
3.5-cm rectangle outline, arranged on an invisible four-by-three grid (see Figure 2 for an example).
Every stimulus contained 12 elements drawn from the pool of 36 that we have used in previous
experiments (see Jones et al., 1998, p. 37; Wills & McLaren, 1997, p. 611). At the beginning of the
experiment, and separately for each subject, 12 elements from the pool were randomly designated as
Category A elements, a different 12 as Category B elements, and the remaining 12 as Category C
elements. Each training stimulus for each category was constructed by starting with all 12 elements
characteristic of that category (e.g., Category A elements for a Category A training stimulus). Each
element in the training stimulus then underwent a 10% chance of being replaced by a randomly
chosen element from one of the other two sets (e.g., replaced by a B or C element in the case of a
Category A training stimulus). It was these modi®ed stimuli that were presented to subjects as
training stimuli. This procedure produces training examples that are composed predominately of
elements characteristic of a particular category but that also exhibit considerable variability in terms
of the speci®c elements they contain. A total of 90 training stimuli were created for each subject, 30
from each of the three categories.

Each test stimulus contained four A elements, x B elements, and (8 2 x) C elements, where x

could be 0, 1, 2, 3, 4, 5, 6, 7, or 8. Ten examples of each of these nine types of test stimulus were
created for each subject. The speci®c elements used to create each test stimulus were chosen
randomly within the constraints provided by the number of A, B, and C elements that the stimulus
was to contain. Ten examples of each of four dummy stimuli were also created, these stimuli being (8
A, 0 B, 4 C), (8 A, 4 B, 0 C), (0 A, 4 B, 8 C), and (0 A, 8 B, 4 C). The purpose of the dummy stimuli
was to obscure from the subjects that all test stimuli of interest (from the perspective of the experi-
menters) were constant in terms of the number of elements from Category A that they contained.

The position of elements within a stimulus was randomly determined for each stimulus pre-
sented, with the constraint that exactly one element occurred at each location in the four-by-three
grid. Where stimuli were accompanied by a category label, this was presented as a large sans serif
capitalA, B, or C in an outline rectangle (4.5 3 3.5 cm) immediatelyto the right of the stimulus itself.

Procedure

Subjects were allocated to one of two between-subject groups such that an equal number (12)
participated in each. The two groups, referred to hereafter as the two-choice and three-choice groups,
differed only in the question they were asked in the test phase.

After subjects had read some general instructions, the 90 training stimuli were presented to them
sequentially and in a random order. Each example was presented for 5 s in the centre of the monitor,
accompanied by the appropriate category label. A plain mid-grey mask in the stimulus and label
rectangles precededthenext example for a period of 2 s. Subjectswerenot required to respond in any

Figure 2. An example stimulus.
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way in this ®rst phase of the experiment. They were simply asked to concentrate on the examples
shown as they would later be asked to classify new, unlabelled examples. This training procedure has
proved effective for stimuli of this type in a number of previous experiments (Jones et al., 1998; Wills
& McLaren, 1997).

The training phase was followed by a test phase. There were 130 stimuli in the test phase (90
target stimuli and 40 dummy stimuli), which again were presented sequentially and in a random
order. Test stimuli were not accompanied by a category label. Subjects in the two-choice condition
were asked, for each stimulus, ``Is this a B or a C?’’ Subjects in the three-choice conditionwere asked
``Is this an A, a B, or a C?’’. Inboth conditions,subjects respondedby pressing the appropriatekeyon
the computer keyboard. Subjects then pressed the ``Y’’ key, whereupon the next stimulus was
immediately presented. There was no time limit for these decisions, and subjects were put under
no pressure to respond quickly.

Results

The probabilities with which subjects responded ``B’’ and ``C’’ to the test stimuli allow a
test of our subsidiary assumption that the magnitude functions for Categories B and C are
the same. If they are then the empirical generalization functions of the two categories
should be the same. That is to say, the probability of responding `̀ B’’ to a stimulus with
x B elements should be the same as the probability of responding `̀ C’’ to a stimulus
with x C elements.

To assess whether this assumption could be discon®rmed with the current data set,
type of probability assessment P(B) or P(C) was included as a within-subjects factor in a
mixed-design analysis of variance (ANOVA). The other two factors in this analysis were:
(1) the number of category-appropriate elements in a stimulus (i.e., B elements for P(B)
and C elements for P(C), nine levels, within subject) and (2) experimental condition (two-
choice vs. three-choice, two levels, between subjects). Type of probability assessment was
non-signi®cant as a main effect, F(1, 22) , 1, p . .5, and did not interact signi®cantly
with any other factor, p . .05 in all cases. However, this analysis did reveal that the type of
question asked (two-choice or three-choice) had a signi®cant effect on responding, F(1,
22) 5 88, p , .0005, as did the number of category-appropriate elements in a stimulus,
F(8, 176) 5 48, p , .05, after a conservative correction for non-sphericity (Greenhouse &
Geisser, 1959). The interaction between number of category-appropriate elements and
experimental condition was non-signi®cant, F(8, 176) 5 2.1, p 5 .13, after a Greenhouse±
Geisser correction (Ãe 5 0.27).

As the two probability assessments did not differ signi®cantly, their average was
employed in all subsequent analyses. Figure 3a shows these means plotted as a function
of number of category-appropriate elements for both the two-choice and the three-choice
conditions.1 Values for the q statistic (as stated in Equation 4) were then calculated from
each pair of points. Speci®cally, for each value of category-appropriate elements, the mean
three-choice probability was subtracted from the mean two-choice probability, and the
resulting number was divided by the mean three-choice probability. The resultant values

1 Note that the abscissa in all these ®gures is reversed such that category-appropriate elements reduce from left
to right. This is to allow the ®gures to conform to the convention that generalization functions are plotted with
negative slopes.
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of q are plotted as a function of category-appropriate elements in Figure 3b. Also plotted
in Figure 3b is the mean probability of choosing Category A in the three-choice condition
as a function of category-appropriate elements. This is the P(A: A,B,C) function referred
to in the Introduction. Category B elements were used as the category-appropriate
elements when plotting this function. Using Category C elements instead would simply
reverse the function left to right.

The central prediction of the ratio rule under test is that the q and P(A: A,B,C)
functions will show the same direction of change over any interval of the category-
appropriate element axis. Inspection of Figure 3b suggests that is not the case for our

Figure 3. Results of Experiment 1. (a) Mean response probability as a function of number of category-
appropriate elements in the presented test stimulus. The ordinate is the mean of the probability of producing a
Category B response to stimuli containing a given number of Category B elements and the probability of
producing a Category C response to stimuli containing that number of Category C elements. (b) Probability of
producing a Category A response in the three-choice condition, and the q statistic (see Equation 4), as a function
of number of category-appropriate elements. (c) As Figure 3b, but plotted as a function of ``distance’’ from the
four category-appropriate elements point on that graph. Figures 3b and 3c show data as unconnected plot
symbols; the lines are the best-®tting quadratics to the plotted data. Figure 3a shows data as connected plot
symbols; there are no best-®t lines shown.
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data. To investigate this further, we attempted to characterize the two functions by poly-
nomial regression. Inspection of the P(A: A,B,C) function suggests that it exhibits a
shallow inverted-U trend. Second-order polynomial regression of the nine data points
of the meanP(A: A,B,C) function produced the best-®t line illustrated by the solid curve in
Figure 3b. The equation of the line is P(A) 5 2 0.003c

2 1 0.021c 1 0.29, where c is the
number of category-appropriate elements. A corresponding regression of the q function
produced the best-®t line q 5 0.02c2 2 0.19c 1 0.86, where c is the number of category-
appropriate elements. This equation suggests a U-shaped trend in the q statistic, opposite
to the trend in P(A: A,B,C) and hence contrary to the predictions of the ratio rule.

The preceding analysis is inconclusive, however, as neither equation represents a
signi®cant ®t to the data, F(2, 6) 5 1.6, p . .25, for the P(A: A,B,C) function and
F(2, 6) 5 1.3, p . .3, for the q function. Further inspection of the q statistic suggests
that there may be a cubic component in the data. This issue is returned to in the
Discussion.

Given that the generalization functions of Categories B and C are not signi®cantly
different to each other in the current data set, a further analysis of the q and P(A: A,B,C)
functions is possible. Recall that the ratio rule predicts that if the magnitude functions for
Categories B and C are the same then the both functions should be symmetrical about the
point xB 5 xC (which is the point 4 category-appropriate elements). Although inspection
of Figure 3b suggests that the q function is not symmetrical about this point, one might
argue that its deviation from symmetry is due to sampling error. On the basis of this
argument, one might average the pairs of data points at 0 and 8, 1 and 7, 2 and 6, and 3
and 5 category-appropriate elements on the grounds that these points were equivalent and
hence taking the average should reduce sampling error. These pairs of points can be
considered to have a ``distance’’ from 4 category-appropriate elements of 1, 2, 3, and 4,
respectively. The single data point at 4 category-appropriate elements provides the zero
distance point.

Figure 3c shows q and P(A: A,B,C) as a function of distance from the 4 category-
appropriate elements point. Second-order polynomial regression revealed that the q
statistic was best ®t by the function q 5 0.04d2 2 0.11d 1 0.37, where d is the value
on the ordinate of Figure 3c. This function, shown as a dotted line in Figure 3c, was a
signi®cant ®t to the data, F(2, 2) 5 116, p , .01, and all three of its terms were
signi®cantly different from zero, t(3) 5 9.8, p , .005 for the d2 term, t(3) 5 6.1, p ,
.001 for the d term, and t(3) 5 31, p , .0005 for the intercept. A corresponding regres-
sion performed on the P(A: A,B,C) data produced a best-®t line P(A: A,B,C) 5 2 0.03d2

1 0.08d 1 0.30. This function, shown as a solid line in Figure 3c, suggests a downward
trend but did not signi®cantly ®t the data, F(2, 2) 5 2.9, p . .25.

Discussion

The results of Experiment 1 are somewhat at odds with the predictions of magnitude-
based models of categorization that employ the ratio rule. Assuming magnitude is a
univariate function of our category-appropriate elements index, the ratio rule predicts
that the q and P(A: A,B,C) functions should show the same direction of change over any
interval of that index.
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The indications from Figure 3b are that this prediction is not upheld in Experiment 1.
However, the failure of both the q and the P(A: A,B,C) functions to signi®cantly ®t a
quadratic makes it dif®cult to draw ®rm conclusions. Quadratic functions were chosen
because this is basically the form predicted by both monotonically accelerating and
monotonically decelerating magnitude functions. One avenue of analysis would have
been to attempt to ®t higher-order functions to the data, such as a cubic function to
the q statistic. We did, in fact, investigate some such functions, but the results of a
replication of this experiment in Experiment 2 (reported later) subsequently led us to
believe that the cubic component of the q statistic was not reliable. Hence, these analyses
are not presented in this paper.

Some conclusions can be drawn from the current experiment under the additional
assumption that the magnitude functions for categories B and C are the same. No
evidence against this assumption was found in the direct test provided by the ANOVA
reported earlier. Under this additional assumption, both the q and the P(A: A,B,C)
functions should be symmetrical about the point 4 B elements. The fact that the observed
q function is clearly not symmetrical about this point is potentially a problem for the ratio
rule. Such a problem might be dismissed as sampling error by arguing that the function is
symmetrical and that deviations from symmetry are due to the relatively small sample
size. However, if such an appeal is valid, then it must be permissible to average data points
at corresponding distances from the mid-point of 4 category-appropriate elements. The
prediction of the ratio rule remains that the q and P(A: A,B,C) functions should show the
same direction of change over any interval of the abscissa in Figure 3c.

Inspection of this ®gure strongly suggests that this prediction is not upheld. However,
the failure of the P(A: A,B,C) function to ®t any quadratic function whilst the q function
®ts an increasing function allows the possibility that both functions are, in fact, increasing
but that the trend in P(A: A,B,C) is too shallow to be detected reliably. This interpretation
of the results would be consistent with the application of the ratio rule to a magnitude-
based model producing monotonically decelerating magnitude functions. However, the
results of Experiment 1 are contrary to the predictions of the ratio rule when applied to a
model producing linear or monotonically accelerating (e.g., exponential) magnitude func-
tions. If the magnitude functions produced were monotonically accelerating then an
inverted-U trend in both q and P(A: A,B,C) would be predicted by the ratio rule, and
hence both functions in Figure 3c would be predicted to show a decreasing trend. If the
magnitude functions produced were linear then both functions in Figure 3c would be
predicted to be horizontal. The signi®cant increasing trend in the q function is contrary to
both these predictions. Hence, for models producing linear or monotonically accelerating
magnitude functions, the ratio rule is an inappropriate theory of the decision process in
categorization (within the assumptions made).

We felt that the results of Experiment 1 were suf®ciently anomalous, from the per-
spective of the ratio rule theory, to merit replication. This was one of the purposes of
Experiment 2.
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EXPERIMENT 2

One problem with the design of Experiment 1 was that category labels were not counter-
balanced; it was always Category A that had the constant number of elements at test and
that was the disallowed option in the two-choice condition. If our subjects had a consistent
response bias towards one of the category labels then this might have led to a distortion of
response probabilities in a way outside of the scope of the ratio rule as considered here.
Experiment 2 controls for this by replicating Experiment 1, but employing equal numbers
of subjects with A, B, and C as the category contributing a constant four elements in test
stimuli and the category disallowed in the two-choice condition. For brevity, we shall refer
to the category that provides a constant number of elements in test stimuli as Category a,
and the two categories providing variable numbers of elements as Categories b and c.

Experiment 2 extends Experiment 1 by the addition of a third between-subjects con-
dition. Subjects in this condition received the same training stimuli and test question as
subjects in the three-choice condition. However, in this new condition the test stimuli
contained no elements from Category a. Instead, the four Category a elements were
replacedwith four elements unseen in the training phase. This manipulation was designed
to substantially reduce the probability with which subjects responded that test stimuli
came from Category a, without actually disallowing this response option. The addition of
this novel-elements condition allows the computation of two further functions. The ®rst
function we describe as P(b: a,b,c)9 , which is the probability of choosing Category a in the
novel-elements condition. The second function is q9 , calculated as q but replacing P(b:
a,b,c), the mean probability from the two-choice condition, with P(b: a,b,c)9 , the mean
probability from the novel-elements condition.

These two new functions, along with the q function and the P(a: a,b,c) function from
the three-choice condition, give a total of four functions to be assessed in Experiment 2.
Our assumption was that our novel-elements manipulation would produce a constant,
possibly zero, magnitude term for Category a at test (hereafter referred to as n N). Under
this assumption, the ratio rule predicts that all four functions must show the same
direction of change over any interval of our category-appropriate elements measure.
The derivation of this prediction has already been demonstrated for q and P(a: a,b,c).
Its extension to the other two functions is straightforward. Predictions for the P(a: a,b,c)9
function can be derived from Equation 3, simply by substituting n N for n A. The ratio
rule’s predictions for the q 9 function are

P(b: a,b,c)9 2 P(b: a,b,c) [n B/(n N 1 n B 1 n C)] 2 [n B/(n A 1 n B 1 n C)]
q9 5 5 8P(b: a,b,c) n B/(n A 1 n B 1 n C)

which simpli®es to

n A 2 n N
q9 5 9n B 1 n C 1 n N

Note that for both q 9 and P(a: a,b,c)9 variability in the function is determined by the term
(n B 1 n C) in the denominator, all other terms being constant. The same conditions hold
for the q and P(a: a,b,c) functions. Hence, the ratio rule predicts that all four functions
will show the same direction of change over any interval of category-appropriate elements.
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Method

Subjects and apparatus

The subjects were 36 higher-education students from the Cambridge area; most were Cambridge
undergraduate or graduate students. The experiment was run (by MS) on an Acorn Risc PC
computer placed in one of two quiet experimental cubicles. The computer was connected to a 14"
colour monitor (Acorn AKF 60), placed at eye level and approximately 90 cm in front of the subjects.
Responses were recorded via a PC keyboard marked up in the manner described in Experiment 1.

Stimuli

The pool of elements from which stimuli were constructedwas extended from 36 to 40 elements
(the 4 extra elements used are shown on the bottomrow of Figure 2). The pool was extended so that
once 12 elements had been randomly allocated to each of the three categories there would be 4
unallocated elements. These 4 elements were designated as the novel elements, and were selected
independently for each subject. The novel elements were not used in the two-choice or three-choice
condition. In the novel-elements condition, the 4 novel elements did not appear in training stimuli,
but did appear in every test stimulus, along with x elements from Category b and (82 x) elements
from Category c, where x took the values 0, 1, 2, 3, 4, 5, 6, 7, or 8. In other words, the test stimuli in
the novel-element conditionwere constructed in the same manner as the test stimuli in the other two
conditions, except that the 4 randomly selected elements from Category a were replaced by the 4
novel elements. In all other respects, the method of stimulus construction was identical to that
employed in Experiment 1. As with all other elements, the position of the novel elements within a
stimulus was determined randomly for each stimulus.

Procedure

Thesubjectswere allocated toone of three conditionssuch that an equal number (12) participated
in each. These conditions were the two-choice and three-choice conditions of Experiment 1, plus a
new novel-elements condition. The novel-elements condition differed from the three-choice condi-
tion only in the stimuli presented in the test phase (see Stimuli section). In all other respects, the
procedure employed in Experiment 2 was identical to the procedure of Experiment 1, with the
exception that, in Experiment 2, allocationof category labels to categories was varied across subjects
by splitting the subjects in each condition into three equal-sized sub-groups. The allocationof labels
to categories in these sub-groups is shown in Table 1.

TABLE 1
Allocation of category labels in the three

sub-groups of Experiment 2

Category

a b c

Sub-group 1 A B C
2 B C A
3 C A B
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Results

Figure 4a shows the probability with which subjects in the three-choice and novel-
elements conditions responded with the Category a label to test stimuli as a function of the
number of Category b elements that they contained. The choice of Category b rather than
Category c elements on the abscissa was arbitrary. For Category b there are equal numbers
of subjects who receive ``A’’, ``B’’, and ``C’’ as its label. The same holds for Category c, and
hence response bias is controlled for whichever is chosen. Number of Category c elements
equals eight minus the number of Category b elements, and so choosing Category c
elements as the abscissa would simply reverse both functions left to right.

Figure 4. Results of Experiment 2. (a) Probability of producing a Category A response in the three-choice and
novel-elements conditions as a function of the number of Category b elements in the presented test stimulus. (b)
Mean response probability as a function of number of category-appropriate elements in each of the three
conditions of Experiment 2. The ordinate is the mean of the probability of producing a Category B response to
stimuli containing a given number of Category B elements and the probability of producing a Category C
response to stimuli containing that number of Category C elements. (c) the q and q9 statistics (see text) as a
function of number of category-appropriate elements. Figures 4a and 4c show data as unconnected plot symbols;
the lines are the best-®tting quadratics to the plotted data. Figure 4b shows data as connected plot symbols; there
are no best-®t lines shown.
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Inspection of Figure 4a suggests that both the P(a: a,b,c) function from the three-
choice condition and the P(a: a,b,c)9 function from the novel-elements condition show an
inverted-U-shaped trend. To investigate this, second-order polynomial regression was
performed on the nine mean data points of each function. The data from the three-choice
condition was found to have the best-®t line P(a: a,b,c) 5 2 0.006b

2 1 0.037b 1 0.291
(the dotted line in Figure 4a) where b is the number of Category b elements. This
function was a signi®cantly good ®t to the data, F(2, 6) 5 5.6, p , .05. The b2 coef®cient
was signi®cantly different from zero, t(7) 5 2.4, p , .05, as was the constant, t(7) 5 8.0,
p , .0005. The b coef®cient was not signi®cantly different from zero, t(7) 5 1.7, p . .1.
These analyses con®rm that the P(a: a,b,c) function has an inverted-U trend. The best-
®tting quadratic for the P(a: a,b,c)9 function (from the novel-elements condition) was
P(a: a,b,c)9 5 2 0.003b2 1 0.016b 1 0.112, shown as a solid line in Figure 4a. This
best-®t line also shows an inverted-U trend, but the function was not a signi®cant ®t to
the data, F(2, 6) 5 3.2, p . .1.

The data points plotted in Figure 4b are the average of the probability with which
subjects responded with their Category b label to test stimuli with x Category b elements
and the probability with which they responded with their Category c label to test stimuli
with x Category c elements. In other words, like Figure 3a from Experiment 1, Figure 4b
shows response probability as a function of number of category-appropriate elements.
Averaging these two probabilities is appropriate because, across subjects, there is no factor
that determines which of the two categories providing variable numbers of elements to
test stimuli should be described as Category b and which as Category c.

For our current purposes it is not the data presented in Figure 4b that are of central
interest, but the q and q9 functions calculated from the mean data points that they
display. These functions are shown in Figure 4c. The q function was calculated in
exactly the same way as it was calculated in Experiment 1. In other words, for each
value of category-appropriate elements, the mean three-choice probability was sub-
tracted from the mean two-choice probability and the resulting number divided by
the three-choice probability. For q 9 , the calculation was to subtract the three-choice
probability from the novel-elements probability and to divide the resulting number by
the three-choice probability.

Inspection of Figure 4c suggests that the q statistic shows an increasing trend whereas
the q9 statistic shows a decreasing trend. In order to specify these two functions more
clearly, each set of nine data points were used to perform a second-order polynomial
regression. The best-®t line for the q function was q 5 0.049c2 2 0.674c 1 2.48, whereas
for the q 9 function it was q 9 5 2 0.021c2 1 0.244c 2 0.368, where c is the number of
category-appropriate elements. The best-®t line for the q function is shown as a dotted
line in Figure 4c, whereas the best-®t line for the q 9 function is shown as a solid line. Both
functions were a signi®cant ®t to the data, F(2, 6) 5 803, p , .0005, for the q function and
F(2, 6) 5 17, p , .005 for the q 9 function. The c2 coef®cients for both functions were
signi®cantly different from zero, t(7) 5 14, p , .005, for the q function and t(7) 5 3.0, p ,
.05, for the q 9 function. The c coef®cients were also signi®cantly different from zero for
both functions, t(7) 5 24, p , .0005, for the q function and t(7) 5 4.3, p , .004, for the q 9
function. Finally, both constants were signi®cantly different from zero, t(7) 5 2.5, p ,
.0005, for the q function, and t(7) 5 3.8, p , .01, for the q9 function.
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Discussion

The results of Experiment 2 directly contradict the predictions of the ratio rule acting on
the output of a magnitude-based model of categorization, within the assumption that
magnitude is a univariate function of category-appropriate elements.

Under this assumption, our results pose two central problems for the ratio rule. First,
the ratio rule predicts that the q and q 9 statistics should show the same direction of change
over any interval of category-appropriate elements. However, the best-®tting quadratics
for these functions show opposite directions of change. Second, the ratio rule predicts
that the q function and P(a: a,b,c) function for the three-choice condition should also
show the same direction of change over any interval of category-appropriate elements.
Irrespective of whether one chooses to plot P(a: a,b,c) as a function of Category b ele-
ments or as a function of Category c elements, the fact that the best-®tting quadratics for
the q and P(a: a,b,c) functions are of opposite shape (U vs. inverted-U shape) is contrary
to the predictions of the ratio rule. One argument against this conclusion might be that
P(a: a,b,c) is an increasing, decelerating function rather than an inverted-U function. As q
is an increasing, accelerating function, both functions show the same direction of change,
and so the predictions of the ratio rule are upheld for these data. However, closer study of
Equations 3 and 6 reveals that both functions must be accelerating or decelerating over
any given interval. Variability in both functions is determined by changes in the term (n B

1 n C). If the rate at which this term changes is increasing over a given interval then both
q and P(a: a,b,c) must show an increasing rate of change over that interval.

Experiment 2 also substantially replicates the results of Experiment 1. In both experi-
ments the best-®tting quadratic for the P(a: a,b,c) function shows an inverted-U trend,
whereas the best-®tting quadratic for the q function shows a U-shaped trend. Any cubic
trend in the q statistic is not replicated in Experiment 2.

MODELLING

Wills and McLaren (1997) proposed a winner-take-all (WTA) connectionist model as an
alternative to the ratio rule in magnitude-based models of categorization. The work
presented in this section demonstrates that our WTA model, unlike the ratio rule, can
account for the results presented in this paper under the assumption of univariate mag-
nitude functions.

The WTA system is illustrated in Figure 5. The magnitude terms for each category are
passed to separate units in the network as input activations. The input activations are
constrained to be no greater than one and no less than zero. The output activity of each
unit in the WTA system is a function of the total input that it receives. In addition to the
magnitude-term inputs, each unit in the WTA system has a ®xed excitatory connection to
itself and ®xed inhibitory connections to other units. These connections cause the units to
``compete’’ with one another until only one has a non-zero activation. In our system, a
decision is assumed to be reached when the activation of one unit exceeds that of its
nearest competitor by some threshold value. The category whose unit has the highest
activity is chosen at that point. Network systems based on the concepts of mutual inhibi-
tion and self-excitation have been proposed previously by, amongst others, Grossberg
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(1976), McClelland (1979), Page (in press), and Rumelhart and Zipser (1986). They have
also been previously employed as models of speci®c experimental paradigms; such as
serial recall (Houghton, 1990) and simple binary-choice reaction time studies (Usher &
McClelland, 1995).

The input activations to our WTA system are assumed to be noisy. In other words,
although the magnitude term represents the mean level of input activity, the momentary
level of input varies randomly about this mean. This means that, although the category
with the highest magnitude term is most likely to be chosen, all other categories have a
®nite chance of being chosen. Further, it means that the WTA model can be considered as
a connectionist implementation of the basic principles of Thurstonian choice (see
Introduction).

Detailed speci® cation of the WTA system

Prior to the presentation of a stimulus, the output activation of all units is assumed to start
from zero. Once the magnitude terms have been presented to the WTA system, the
output activation of each unit is updated repeatedly until a decision has been reached.
The output activation of unit i in the WTA system on update c is determined by

oi,c2 1 1 Eni,c
oi,c 5 10

1 1 Eni,c 1 D

if ni,c . 0 and otherwise by

oi,c2 1 1 Eni,c
oi,c 5 11

1 2 Eni,c 1 D

where ni,c is the total input to unit i on update c, and E and D are parameters representing
the rate of excitation and decay of activation within the unit. Equations 8 and 9 can be
described as time-averaging, squashing functions. They are squashing functions because
whatever the absolute magnitude of the input to a unit, its activity is constrained by these
functions to fall between 1 1 and 2 1. The equations are time averaging because the

Figure 5. The winner-take-all model.
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inclusion of the unit’s activity on the previous update in the calculation of its current
activation means activation represents, not the instantaneous input to a unit, but an
average of the inputs it has received in the recent past. A more detailed discussion of
the behaviour of activation functions of this general form is provided by Grossberg
(1976). In our simulations o is constrained to be non-negative.

The total input to a unit i on update c is given by

ni,c 5 ri,c 1 oi,c2 1 2 oj,c2 1 12S j ¹ i

The term ri,c in this equation is the value of the noisy input produced by the magnitude
term n i and presented to unit i on update c. In the simulations that follow the noise added
to n i ranges from 1 N to 2 N, has a mean of zero, and has a rectangular distribution (i.e.,
all values from 1 N to 2 N are equally likely). Superimposed on this noise function is the
constraint that ri,c cannot exceed one or fall below zero. The remaining terms of Equation
12 state that each unit receives a positive input equal to its own activation on the last
update and a negative input equal to the sum of the activations of the other units. It is
these terms that specify the self-excitatory and mutually inhibitory properties of the
WTA system.

The ®nal component of the WTA system is the decision threshold. The decision
threshold is the amount by which the unit with the highest activation has to exceed
the activation of its nearest competitor in order to ``win’’ and cause the production of
its associated response. This value is the S parameter of the WTA model. In the current
simulation, S is set to 0.18 for the two-choice condition, 0.65 for the three-choice con-
dition, and 0.72 for the novel-elements condition. Employing a different value of S for
each condition is in line with previous applications of the model where we have assumed
that both the type of decision (two-choice vs. three-choice here), and the presence of
novel elements in test stimuli, affects the value of S (Wills, 1998; Wills & McLaren, 1997).
The use of a higher value for S in conditions where some elements of the test stimuli are
novel represents a hypothesis that subjects trade speed for accuracy when asked to make
decisions about stimuli that are unfamiliar.

The remaining parameters, E, D and N, are set to 0.2, 0.1, and 1.1, respectively. These
values are the same as those employed by Wills and McLaren (1997) in the simulation of
their experiments, and by Wills (1998) in the simulation of the experiments presented in
Jones et al. (1998).

Speci® cation of magnitude terms

In order to simulate the results of Experiment 2, magnitude terms for each category at
each value of category-appropriate elements are required. We will assume for the pur-
poses of this simulation that these magnitude terms are linear functions of number of
category-appropriate elements. Each category is assumed to have the same magnitude
function, which, in the current simulations, takes the form

n i 5 0.047ci 1 0.012 13

where ci is the number of category i elements that the stimulus contains.
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In previous applications of the WTA model, we have employed a single-layer, ele-
mental, error-correcting network to specify the magnitude terms. This model was
employed because it captured something of the effects of varying the number of training
examples presented. In the current experiments, because number of training examples
does not vary between conditions, the performance of this network model is characterized
by a single linear function. Equation 13 speci®es this function for the network model
presented in Wills and McLaren (1997) when the model’s learning-rate parameter is set
to 0.0025. This value is of the same order of magnitude as learning rates that we have
employed previously in simulating experiments of this sort.

Simulation

The simulation we present is of Experiment 2. Experiment 1 is not simulated because its
two conditions are repeated in Experiment 2 and because possible response bias is not
controlled for in Experiment 1.

The simulation involved presenting, in turn, every combination of magnitude terms
that would be produced by the application of Equation 13 to the set of test stimuli
employed in the experiment. Each combination was presented 50,000 times, and the
decision made by the WTA system was recorded each time. The probability with which
each response was made to each type of test stimulus was then calculated from this record.
This was done separately for each of the three experimental conditions.

In the two-choice condition of our experiment, subjects were not allowed to make
Category a responses. In our WTAmodel this was simulated by ®xing the output activation
of the Category a unit (oa) at zero. The output activations of the Category b and c units
were allowed to take the values determined by Equations 10, 11, and 12. The assumption
made in doing this is that only allowed responses compete for the right to produce a
response. In the three-choice condition and in the novel-elements condition, all three
output activations were allowed to vary. In the novel-elements condition, n A was assumed
to be zero.2 However, the noise component of the magnitude term means that oa will not
always be equal to zero, and hence Category a will be chosen with a non-zero probability.

The response probabilities predicted by the WTA model are presented (as lines) in
Figures 6a±6c, along with the mean probabilities observed in Experiment 2 (as uncon-
nected plot symbols). It can be seen from this ®gure that the WTA model, unlike the ratio
rule, can predict the correct shape for the q, q 9 , P(a: a,b,c) and P(a: a,b,c)9 functions.
Further, the data and predictions correspond fairly closely, although it may be noted that
the values predicted for q and P(a: a,b,c)9 are slightly lower than those observed. Never-
theless, our simulation demonstrates that the WTA model is capable of predicting the
major trends observed in our experiment. We have already determined that (within
certain assumptions) the ratio rule is unable to do so.

2
Inspection of Equation 13 might suggest that n a should be set to 0.012 rather than zero, on the grounds that ca

will be equal to zero. However, for the simple network model presented in Wills and McLaren (1997), n a will be
equal to zero because the novel elements are not presented in the training phase, and hence no association will
form between them and the category labels. The predictions presented are not dependent on the choice of zero
rather than 0.012 for the value of n a.
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Figure 6. Simulation of Experiment 2 with the full WTA model (Figures 6a±6c) and the simple WTA model
(Figures 6d±6f). The lines show the predictions of the models. The observed data of Experiment 2 are re-plotted
as unconnected plot symbols in Figures 6a±6c for comparison.
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Discussion and further simulation

The WTA model is a relatively complex system with four free parameters (E, D, N, and
S). The ratio rule, in contrast, has no free parametersÐits predictions are entirely
determined by the magnitude terms that it is presented with. This contrast in complexity
raises two related questions. First, is it simply increased complexity and, in particular, the
presence of more parameters, that permits the WTA model to successfully account for
our data? Second, which components of this complex model are central to producing its
predictions, and which are unnecessary for predicting the current data set?

Despite its complex statement, a simple theoretical principle lies at the heart of the
WTA model. The principle is that one always chooses the allowed alternative with the
largest magnitude term. If the alternative with the largest magnitude term is not chosen,
this is because magnitude terms are noisy and the alternative chosen appeared to have the
largest magnitude term over the ®nite time allowed for decision.

The most basic instantiation of the central ``pick the biggest’’ principle underlying the
WTA model would be to take the instantaneous value of each of the noisy magnitude
terms and pick the alternative with the largest value at that instant. The probability with
which this simple-WTA system picks each alternative is entirely determined by the means
and distributions of the magnitude terms. Like the ratio rule, the simple-WTA system has
no free parameters, although more information about the magnitude terms is required to
derive predictions from the simple-WTA system.

We have calculated the predictions of the simple-WTA system assuming magnitude
terms with a rectangular distribution with a width of 0.7 and means determined by
Equation 13. The correspondence between predictions and data is by no means as
good for this simpli®ed model as it is for the full model (see Figures 6d±6f). However,
it can be seen that the simple model can correctly predict the basic trends observed in the
q, P(a: a,b,c) and P(a: a,b,c)9 functions. The q function is predicted to show an increasing
trend, whereas the P(a: a,b,c) and P(a: a,b,c)9 functions are predicted to show an inverted-
U-shaped trend. Employing Gaussian distributions with a standard deviation of 0.28
(which have a rectangular equivalent with a width of 0.7) produces comparable results.

The fact that the simple-WTA model can predict the q function to be different in
shape from the P(a: a,b,c) and P(a: a,b,c)9 functions is encouraging. It means that the
success of the WTA class of models in predicting these functions where the ratio rule
failed to do so is not simply due to the greater complexity of WTA models or the greater
number of parameters employed. It also suggests that it is the central ``pick the biggest
from noisy alternatives’’ principle, which underlies the success of the full WTA model,
rather than the speci®c way this principle is instantiated.

However, the presented simulation of the simple-WTA model does not correctly
predict the trend in the q 9 statistic. We cannot state de®nitively that the simple-WTA
model is unable to predict this trend, but we believe that it is the adoption of different
decision thresholds, for the three-choice and novel-elements conditions in the full model
that allows it to correctly predict the q 9 data. Were S to take the same value in both
conditions, the probability of choosing, say, the Category b response for a stimulus with x
Category b elements would always be greater in the novel-elements condition than in the
three-choice condition (and hence q9 would always be positive). This is because there is
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less competition from the Category a alternative in the novel-elements condition (due to
the stimuli in that condition containing no Category a elements). Increases in the value of
S reduce the chance of choosing an alternative that does not have the highest magnitude
term. Hence increasing the value of S in the novel-elements condition has the effect of
reducing the response probabilities in the region three category-appropriate elements
down to zero category-appropriate elements. At zero category-appropriate elements,
the effect is suf®ciently great to make the predicted probability of response in the
novel-elements condition lower than the predicted probability for the three-choice con-
dition, causing q 9 to be negative and producing a downward trend in the q9 statistic.

GENERAL DISCUSSION

Any theory of learning and memory whose output is a set of magnitude terms must
specify how these terms translate into testable predictions. Where those predictions
concern response probabilities, it is commonly assumed that the ratio rule provides the
appropriate translation. With certain quali®cations, this assumption has been shown to be
incorrect for the categorization experiments presented in this paper.

If any one step of a chain of inferences is incorrect then the conclusions drawn from
that process must be brought into question. Consequently, theoretical conclusions about
the nature of learning and memory that have been drawn from models that employ the
ratio rule must be re-examined if our conclusion is valid. Conversely, if the assumptions
we have made in coming to our conclusions can be shown to be invalid then the ratio
rule is not necessarily incorrect. We consider some possible arguments against our
conclusions.

One general class of argument arises from the fact that we have estimated the shape of
our four functions, q, q9 , P(a: a,b,c), P(a: a,b,c)9 , from mean data rather than from the data
of individual subjects. On this basis, one could argue that although we have demonstrated
the ratio rule to be incorrect for average responses, it may actually be correct for indi-
viduals. If this were shown to be true it would not substantially change our conclusion
that the ratio rule is incorrect, as most models of memory have been predominantly
applied to mean rather than individual data.

Another variant of the general argument against using mean data would be that the
assessment of functions provided is not reliable or is substantially inferior to that provided
by multivariate methods. Although the q statistic appears to have a cubic component in
Experiment 1 but not in Experiment 2, the presence of the same basic trends in these two
experiments provides substantial evidence against the position that our assessment
method is unreliable. Further, in a between-subjects design, the adoption of multivariate
methods for the q statistic would be inappropriate because the function is calculated from
decisions made by different people. This problem could be addressed by the adoption of a
within-subjects design. The central problem with this approach would be that if any
subject made exclusively Category a responses at any value of category-appropriate
elements in the three-choice decision, then the value of q calculated from their data would
be unde®ned, because P(b: a,b,c) would be estimated as zero, and any number divided by
zero is unde®ned. There seems to be no satisfactory way of addressing this problem if it
occurredÐexcluding subjects because one’s dependent measure cannot represent their
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behaviour is not really appropriate, and replacing the unde®ned values with some real
number would be dif®cult to do in a manner that was both non-arbitrary and relatively
atheoretical.

A reasonable criticism of our experiments would be to point out that the stimuli
employed are rather more complex than those typically used in category-learning experi-
ments. It may therefore be argued that the results we have found with our complex stimuli
do not generalize to more simple stimuli, such as simple outline drawings or basic
geometric forms. If this were shown to be true, the use of the ratio rule to describe
categorical decisions about simple stimuli might be valid. If one accepts that the objects
we have to categorize are often complex, a theory of categorical decision that can only
explain our decisions about stimuli that are simple seems to be of limited use. However,
the question of whether our results generalize to simple stimuli is clearly an empirical one
and worthy of investigation.

A different line of argument against our conclusion that the ratio rule is incorrect
would be to demonstrate that, for speci®c models of categorization, the resultant magni-
tude terms for our test stimuli were not univariate functions of the number of category-
appropriate elements. For example, magnitude terms in the generalized context model
(GCM: Nosofsky, 1986) are determined by the position of stimuli in a psychological
similarity space. If one could determine the position of our test stimuli in such a space
and demonstrate that they were not at a constant distance to the Category a prototype
then the GCM’s use of the ratio rule would potentially be appropriate. This conclusion is
itself subject to two quali®cations. First, it would have to be demonstrated that the GCM
could actually predict our results from the psychological similarity space derived. Second,
the positions of stimuli in psychological similarity space are determined in GCM by a
model of identi®cation that assumes the ratio rule to be correct. Some way of avoiding the
circularity involved in trying to test a theory whilst assuming it to be true would have to
be found.

A more general argument against our conclusions would be to state that magnitude
terms are affected not only by the stimulus presented but also by the alternatives allowed
for the decision. If this were true for our experiments then the derivation of the q statistic
presented in Equations 4, 5, and 6 would be ¯awed, as n B is speci®cally assumed not to be
affected in this way. This argument may be seen as a quali®cation of our conclusions,
which may thus be stated more fully as ``the ratio rule is incorrect for models that have no
process by which information about allowed decision alternatives can affect the magni-
tude terms produced’’. This quali®cation excludes none of the categorization models
cited in this paper from our conclusions.

Interestingly, a number of theorists have proposed ways in which the ratio rule as
originally stated may be developed to allow it to be sensitive to the alternatives allowed for
decision. For example, Restle (1961) suggests that, in a two-alternative decision, both
magnitude terms should have a value subtracted from them that represents the similarity
of those two alternatives. Hence, under Restle’s theory, the decision between a foreign
holiday and a foreign holiday plus a peanut, is treated as a decision between a peanut and
nothing because the holiday is received irrespective of one’s choice. Restle did not extend
his theory to situations involving more than two alternatives and hence it cannot be
applied to the current data. Tversky (1972) proposed a similar theory, which is applicable
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to the N-alternative case, but his theory replaces the single magnitude term per alter-
native required by the ratio rule with a set of magnitude terms that represent the impor-
tance of particular aspects of each alternative. Most models that employ the ratio rule
would require substantial revision in order to allow them to provide the set of magnitude
terms required.

If one needs to replace the ratio rule in its basic form with a much more complex
theory of decision making, such as Tversky’s, in order to explain our data, then this would
support our central conclusion that the ratio rule, as currently employed, is incorrect.
However, an alternative approach might be to make some minor modi®cation to the ratio
rule that would allow it to account for our results. Although it is impractical to consider
every possible modi®cation, we discuss one particular idea which has been proposed by a
number of researchers (e.g., Aitken, 1996; Nosofsky & Zaki, 1998).

The modi®cation is to add a constant, which can be thought of as representing the
presence of background noise in the decision process. Speci®cally, the ratio rule is mod-
i®ed to

n i 1 X
P(i) 5 14n

S n j 1 nX
j 5 1

where X is a constant representing background noise. This modi®cation allows the ratio
rule to account for (amongst other things) the results of Jones et al. (1998) even if linear
magnitude functions are assumed. However, the addition of a constant will not affect the
prediction that change in P(a: a,b,c) and change in P(a: a,b,c)9 are determined by change
in (n B 1 n C). Similarly, this modi®ed ratio rule results in a prediction for q of

n A 1 X
q 5 15n B 1 n C 1 2X

and for q 9 of

n A 2 n N
q9 5 16n B 1 n C 1 n N 1 3X

The addition of constants will not affect the prediction that changes in q and q9 are
determined by the changes in n B 1 n C. Hence, this modi®cation still predicts that all
four empirical functions, q, q 9 , P(a: a,b,c) and P(a: a,b,c)9 , will have the same direction of
change over any given interval of category-appropriate elements, which we have shown is
not the case.

Our central conclusion is that the ratio rule is an inappropriate theory of categorical
decision and should be replaced by a system based on the principles of Thurstonian
choice. However, the ratio rule and Thurstonian choice need not necessarily be con-
sidered as different classes of explanation. As discussed earlier, Yellott (1977) demon-
strated that the predictions of the ratio rule are equivalent to a Case V Thurstonian
choice process with double exponential noise distributions. As such, the ratio rule may
be considered as a description of one member of the set of Thurstonian choice
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processes.3 If the ratio rule is considered in this way then our central conclusion is more
properly stated as ``the Case V double exponential Thurstonian choice process is an
inappropriate model of categorical decision, but other Thurstonian choice processes
are potentially appropriate’’. However, one might alternatively consider the ratio rule
to be a statement that people make probabilistic judgements on the basis of deterministic
magnitude terms, in contrast to the Thurstonian theory that people make deterministic
judgements on the basis of probabilistic magnitude terms. If considered in this manner,
the ratio rule and Thurstonian choice are clearly different classes of explanation.

Finally, it is important to state that the WTA model presented by Wills and McLaren
(1997) is just one of a large class of models that produce predictions about response
probability and response time on the basis of a competitive race. Other examples of
this class include a number of connectionist models (e.g., Houghton, 1990; Lacouture
& Marley, 1991; Usher & McClelland, 1995), some instance-based memory models (e.g.,
Logan, 1988; Nosofsky & Palmeri, 1997), and several other mathematical models of
various descriptions (e.g., Karpiuk, Lacouture, & Marley, 1997; Ratcliff, 1978). Page
(in press) provides an excellent discussion of the similarities and differences between
some of the aforementioned theories. By using our WTA model to simulate the data
presented in this paper we do not intend to imply that it is the only model of its class
that has the potential to explain our results. Indeed, the partial success of our simple
WTA model suggests that it is the general principles of Thurstonian choice, rather than
the competitive race itself, that underly the success of our full model. Many models
employing these general principles are likely to be able to explain many of our results
(e.g., Ashby & Townsend, 1986), as long as the noise distribution employed does not
render their predictions indistinguishable from those of the ratio rule.
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